3
7. For recent uses of N-iminopyridinium ylides, see:
(a) Gillie AD, Jannapu Reddy R, Davies PW. Adv Synth Catal.
2016;358:226–239;
This work was supported by JSPS, Japan (Grant-in-Aid for
Scientific Research (C) Nos. 25410054 and 16K05783) and the
Sumitomo Foundation (No. 130325).
(b) Ding S, Yan Y, Jiao N. Chem Commun. 2013;49:4250–4252;
(c) Zhao J, Li P, Wu C, Chen H, Ai W, Sun R, Ren H, Larock RC,
Shi F. Org Biomol Chem. 2012;10:1922–1930;
References and notes
(d) Xu X, Zavalij PY, Doyle MP. Angew Chem Int Ed.
2013;52:12664–12668;
(e) Zhou Y-Y, Li J, Ling L, Liao S-H, Sun X-L, Li Y-X, Wang L-
J, Tang Y. Angew Chem Int Ed. 2013;52:1452–1456.
8. (a) Guimond N, Guimond N, Gouliaras C, Fagnou K. J Am Chem
Soc. 2010;132:6908–6909;
1. (a) Li X, Han C, Yao H, Lin A. Org Lett. 2017;19:778–781;
(b) Xie F, Yu S, Qi Z, Li X. Angew Chem Int Ed. 2016;55:15351–
15355;
(c) Hassan AA, Abdel-Latif FF, Nour El-Din AM, Mostafa SM,
Nieger M, Bräse S. Tetrahedron. 2012;68:8487–8492;
(d) Kondakal VVR, Ilyas Qamar M, Hemming K. Tetrahedron
Lett. 2012;53:4100–4103;
(b) Rakshit S, Grohmann C, Besset T, Glorius F. J Am Chem. Soc.
2011;133:2350–2353;
(c) Zeng R, Fu C, Ma S. J Am Chem Soc. 2012;134:9597–9600;
(d) Karthikeyan J, Haridharan R, Cheng C-H. Angew Chem Int Ed.
2012;51:12343–12347;
(e) Hemming K, Khan MN, Kondakal VVR, Pitard A, Qamar MI,
Rice CR. Org Lett. 2012;14:126–129;
(f) Körner O, Gleiter R, Rominger F. Synthesis. 2009;3259–3262;
(g) O'Gorman PA, Chen T, Cross HE, Naeem S, Pitard A, Qamar
MI, Hemming K. Tetrahedron Lett. 2008;49:6316–6319;
(h) Aly AA, Hassan AA, Ameen MA, Brown AB. Tetrahedron
Lett. 2008;49:4060–4062;
(e) Ye B, Cramer N. J Am Chem Soc. 2013;135:636–639;
(f) Hyster TK, Ruhl KE, Rovis T.
2013;135:5364–5367;
J Am Chem Soc.
(g) Cui S, Zhang Y, Wu Q. Chem Sci. 2013;4:3421–3426;
(h) Zhang Y, Wang D, Cui S. Org Lett. 2015;17:2494–2497;
(i) Guo W, Zhou T, Xia Y. Organometallics. 2015;34:3012–3020;
(j) Zhou X, Peng Z, Zhao H, Zhang Z, Lu P, Wang Y. Chem
Commun. 2016;52:10676–10679;
(i) Cunha S, Damasceno F, Ferrari J. Tetrahedron Lett.
2007;48:5795–5798;
(j) Wender PA, Paxton TJ, Williams TJ.
2006;128:14814–14815;
J Am Chem Soc.
(k) Ji C, Xu Q, Shi M. Adv Synth Catal. 2017;359:974–983;
(l) Wu X, Wang B, Zhou Y, Liu H. Org Lett. 2017;19:1294–1297;
(m) Wu J-Q, Zhang S-S, Gao H, Qi Z, Zhou C-J, Ji W-W, Liu Y,
Chen Y, Li Q, Li X, Wang H. J Am Chem Soc. 2017;139:3537–
3545.
(k) Teklu S, Gundersen L-L, Larsen T, Malterud KE, Rise F.
Bioorg Med Chem. 2005;13:3127–3139;
(l) Stierli F, Prewo R, Bieri JH, Heimgartner H. Helv Chim Acta.
2004;66:1366–1375;
(m) Gomaa MA-M. J Chem Soc Perkin Trans 1. 2002;341–344;
(n) Kondo T, Kaneko Y, Taguchi Y, Nakamura A, Okada T,
Shiotsuki M, Ura Y, Wada K, Mitsudo T. J Am Chem Soc.
2002;124:6824–6825;
9. (a) Matsuda T, Tomaru Y. Tetrahedron Lett. 2014;55:3302–3304;
(b) Matsuda T, Tomaru Y, Matsuda Y. Org Biomol Chem.
2013;11:2084–2087.
10. For the preparation of N-(pivaloyloxy)amides, see: Han X-L, Zhou
C-J, Liu X-G, Zhang S-S, Wang H, Li Q. Org Lett. 2017;19:6108–
6111.
(o) Hirano K, Minakata S, Komatsu M. Bull Chem Soc Jpn.
2001;74:1567–1575;
(p) Abe N, Fujii H, Kakehi A. Heterocycles. 2001;55:1189–1194.
2. (a) Matsuda T, Sakurai Y. J Org Chem. 2014;79:2739–2745;
(b) Matsuda T, Sakurai Y. Eur J Org Chem. 2013;4219–4222.
3. (a) Takahashi M, Watanabe S. Chem Lett. 1979;1213–1214;
(b) Takahashi T, Hirokami S, Nagata M, Yamazaki T. J Chem Soc
Perkin Trans 1. 1988;2653–2662;
11. General Procedure for Ring-Opening Annulation of
Cyclopropenones 2 with N-(Pivaloyloxy)amides 1. Preparation of
3aa. A Schlenk tube was charged with N-(pivaloyloxy)benzamide
(1a, 22.1 mg, 0.100 mmol), diphenylcyclopropenone (2a, 26.8 mg,
0.130 mmol), and K2CO3 (1.4 mg, 0.010 mmol), the tube was
evacuated and backfilled with nitrogen. THF (0.75 mL) was added
through the septum via syringe, and the mixture was heated at 60
°C for 1 h. After cooling to room temperature, the reaction
mixture was filtered through a plug of silica gel washing with
CHCl3, and the filtrate was concentrated. The residue was purified
by preparative TLC on silica gel (CHCl3) to afford 2,5,6-triphenyl-
1,3-oxazin-6-one (3aa, 30.6 mg, 0.094 mmol, 94%) as a pale
yellow solid. m.p. 206–207 °C; 1H NMR (301 MHz, CDCl3) δ
7.23–7.36 (m, 8H), 7.47–7.56 (m, 4H), 7.59–7.64 (m, 1H), 8.33–
8.38 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 118.2, 127.9, 128.2,
128.4, 128.5, 128.8, 129.92, 129.94, 130.1, 130.6, 132.6, 133.2,
136.2, 158.8, 160.4, 161.0; HRMS (ESI) calcd for C22H16NO2 [M
+ H]+ 326.1176, found 326.1179; IR (ν/cm–1): 1736, 1604, 1543,
702. 3pa: m.p. 198–199 °C; 1H NMR (301 MHz, CDCl3) δ 4.26
(s, 5H), 4.57 (t, J = 1.8 Hz, 2H), 5.09 (t, J = 1.8 Hz, 1H), 7.16–
7.32 (m, 8H), 7.37–7.43 (m, 2H); 13C NMR (75.6 MHz, CDCl3) δ
69.6, 70.2, 72.3, 72.7, 116.0, 127.8, 127.9, 128.4, 129.8, 130.1,
130.6, 133.0, 136.5, 159.3, 161.1, 167.4; HRMS (ESI) calcd for
C26H20FeNO2 [M + H]+ 434.0838, found 434.0838; IR (ν/cm–1):
1728, 1597, 1535, 702. 3ac: m.p. 200–201 °C; 1H NMR (301
MHz, CDCl3) δ 7.01 (dd, J = 5.0, 4.1 Hz, 1H), 7.16 (dd, J = 3.6,
1.2 Hz, 1H), 7.20 (dd, J = 5.0, 3.7 Hz, 1H), 7.25 (dd, J = 3.9, 1.2
Hz, 1H), 7.51–7.67 (m, 5H), 8.31–8.38 (m, 2H); 13C NMR (126
MHz, CDCl3) δ 107.2, 128.0, 128.3, 128.6, 128.7, 128.9, 129.6,
129.6, 132.76, 132.84, 133.0, 133.5, 139.9, 154.0, 159.9, 161.0;
HRMS (ESI) calcd for C18H12NO2S2 [M + H]+ 338.0304, found
338.0304; IR (ν/cm–1): 1736, 1604, 1566, 1527, 1427, 710.
12. In the case of the reaction of N-methoxybenzamide, the formation
of an uncyclized product was observed.
(c) Jeong JU, Chen X, Rahman A, Yamashita DS, Luengo JI. Org
Lett. 2004;6:1013–1016;
(d) Riva R, Banfi L, Basso A, Zito P. Org Biomol Chem.
2011;9:2107–2122.
4. (a) Buschmann E, Steglich W. Angew Chem Int Ed. 1974;13:484;
(b) Maier G, Schäfer U. Tetrahedron Lett. 1977;1053–1056;
(c) De Mayo P, Weedon AC, Zabel RW. Can
1981;59:2328–2333.
J Chem.
5. (a) Eiden F, Nagar BS. Naturwissenschaften. 1963;50:403;
(b) Götze S, Steglich W. Chem Ber. 1976;109:2327–2330;
(c) Ristano F, Grassi G, Foti F, Caruso F, Lo Vecchio G. J Chem
Soc Perkin Trans 1. 1979;1522–1524;
(d) Maier G, Schäfer U. Liebigs Ann Chem. 1980;798–813;
(e) Stájer G, Szabó AE, Fülöp F, Bernáth G. Synthesis 1984;345–
346;
(f) Yokoyama M, Hatanaka H, Sakamoto K. J Chem Soc Chem
Commun. 1985;279–280;
(g) Kristinsson H, Winkler T, Rihs G, Fritz H. Helv Chim Acta.
1985;68:1155–1159;
(h) Baccalli EM, Benincori T, Marchesini A. Synthesis. 1988;630–
631;
(i) Millan DS, Prager RH, J Chem Soc Perkin 1. 1998;3245–3252;
(j) Alajarín M, Vidal A, Sánchez-Andrada P, Tovar F, Ochoa G.
Org Lett. 2000;2:965–968;
(k) Chen M, Ren Z-H, Wang Y-Y, Guan Z-H. Angew Chem Int
Ed. 2013;52:14196–14199;
(l) Karad SN, Chung W-K, Liu R-S. Chem Sci. 2015;6:5964–
5968;
(m) Song P, Yu P, Lin J-S, Li Y, Yang N-Y, Liu X-Y. Org Lett.
2017;19:1330–1333.
13. The reactions with 0.1 equivalents of K2CO3 gave more
reproducible results.
14. For a detailed discussion of the process, see: Alajarín M, Sánchez-
6.
(a) Sasaki T, Kanematsu K, Kakehi A.
1971;36:2451–2453;
(b) Barr JJ, Storr RC, Tandon VK. J Chem Soc Perkin Trans 1.
J Org Chem.
Andrada P, Cossío FP, Arrieta A, Lecca B.
2001;66:8470–8477.
J Org Chem.
1980;1147–1149;
(c) Pilli RA, Rodrigues JAR, Kascheres A.
1983;48:1084–1091.
15. Cyclopropenones were synthesized according to literature
procedures. 2b: (a) Vanos CM, Lambert TH. Angew Chem Int Ed.
2011;50:12222–12226; 2c: (b) Peart PA, Tovar JD. J Org Chem.
2010;75:5689–5696; 2d: (c) Nacsa ED, Lambert TH. Org Lett.
J Org Chem.
See also: (d) Marley H, Wright SHB, Preston PN. J Chem Soc
Perkin Trans 1. 1989,1727–1733.