1726
S. W. Elmore et al. / Bioorg. Med. Chem. Lett. 14 (2004) 1721–1727
Table 5. Human cell native protein assays for transcriptional activation of aromatase, TAT and transcriptional repression of osteocalcin, IL-6,
PGE2 and collangenase for active enantiomers (À)-anti 30 and (À)-syn 32
Aromatasea
TAT
Osteocalcin
IL-6
PGE2
Collagenase
Compd
EC50
,
eff.
(%dex)
EC50
,
eff.
(%dex)
EC50
,
eff.
(%dex)
EC50
,
eff.
(%dex)
EC50
,
eff.
(%dex)
EC50
,
eff.
(%dex)
(nM)c
(nM)c
(nM)c
(nM)c
(nM)c
(nM)c
pred
45ꢁ4.1 96ꢁ3.5
48ꢁ24
40ꢁ23
95ꢁ5.3
71ꢁ17
49ꢁ3.6
32
n.d.
—
94
n.d.
38ꢁ7.0
3.6ꢁ2.0 98ꢁ2.2 2.0ꢁ1.1 100ꢁ0.60 0.40ꢁ0.08 98 ꢁ0.90
(À) 4a
(À) 30
(À) 32
160ꢁ36
640ꢁ35
59ꢁ20
82ꢁ8.5
30ꢁ17
62ꢁ31
45ꢁ27
83ꢁ1.5
82ꢁ1.3
n.d.
35ꢁ14
n.d.
95ꢁ3.4
95ꢁ3.2
37ꢁ7.8
32ꢁ7.6
3.4ꢁ1.9
77ꢁ6.2
89ꢁ4.0
97ꢁ1.6
26ꢁ6.8 110ꢁ31
43ꢁ2.6 290ꢁ140 67ꢁ17
54ꢁ14 71ꢁ19
90ꢁ4.3 5.4ꢁ3.8
a Values for data in this Table are represented in identical fashion to those in Table 1. n.d. not determined.
have been able to achieve a significant in vitro differ-
entiation of transcriptional repression/activation in
human cell native protein assays that may be pertinent
to the antiinflammatory and side effect profiles of GCs.
Given that the moderate transcriptional differentiation
seen with 4a has been shown to translate to measurable
in vivo improvements in at least two side effect para-
meters (glucose metabolism, bone), one would expect
the more dissociated profile of (À) 30 to yield an
improved in vivo therapeutic window.
7. Coghlan, M. J.; Elmore, S. W.; Kym, P. R.; Kort, M. E.
Current Topics in Med. Chem. 2003, 3, 1617.
8. Barnes, P. J.; Pedersen, S.; Busse, W. W. Am. J. Respir.
Crit. Care Med. 1998, 157, 1.
9. Adcock, I. M. Pulm. Pharmacol. Ther. 2000, 13, 115.
10. Beato, M.; Truss, M.; Chavez, S. Ann. N. Y. Acad. Sci.
1996, 784, 93.
11. Evans, R. M. Science 1988, 240, 889.
12. Baxter, J. D. Pharmacol. Ther. B 1976, 2, 605.
13. Sels, F.; Dequeker, J.; Verwilghen, J.; Mbuyi-Muamba,
J. M. Lupus 1996, 5, 89.
14. Anonymous Nutr. Rev. 1976, 34, 185.
15. Gottlicher, M.; Heck, S.; Herrlich, P. J. Mol. Med. 1998,
76, 480.
16. Gottlicher, M.; Heck, S.; Doucas, V.; Wade, E.; Kull-
mann, M.; Cato, A. C.; Evans, R. M.; Herrlich, P. Ster-
oids 1996, 61, 257.
17. Yang-Yen, H. F.; Chambard, J. C.; Sun, Y. L.; Smeal, T.;
Schmidt, T. J.; Drouin, J.; Karin, M. Cell 1990, 62, 1205.
18. Jonat, C.; Rahmsdorf, H. J.; Park, K. K.; Cato, A. C.;
Gebel, S.; Ponta, H.; Herrlich, P. Cell 1990, 62, 1189.
19. Van der Burg, B.; Liden, J.; Okret, S.; Delaunay, F.;
Wissink, S.; Van der Saag, P. T.; Gustafsson, J. A. Trends
Endocrinol. Metab. 1997, 8, 152.
Although the exact mechanism by which GR mediates
transcription is not fully elucidated, one possible expla-
nation for these differences are the varied abilities of the
GRC to properly associate with accessory proteins
necessary for normal function of the transcriptional
machinery.38 Ligand-dependent GC regulated tran-
scription appears to require the association of the GRC
with specific co-activator or co-repressor proteins.39
These accessory proteins are recruited through a pro-
tein-protein surface interaction between an amphipathic
a-helix on the coactivator/corepressor to a hydrophobic
groove on the surface of the activated GRC. This
hydrophobic binding groove is intimately associated
with the ligand binding domain (LBD). The X-ray
crystal structure of the ternary complex comprised of
the GR LBD in itsagonits form bound to dex and a
coactivator motif from TIF-2 elegantly depictsthisclose
association.40,41 Accessory protein recruitment should
therefore be highly dependent upon the ligand and the
intricate conformational changesit impartson GR
upon binding. The ability of GR when bound to (À) 30
to differentially recruit known coactivatorsand co-
repressors of GR has not yet been investigated.
20. Brattsand, R.; Linden, M. Aliment. Pharmacol. Ther.
1996, 10, 81.
21. Cato, A. C.; Wade, E. BioEssays 1996, 18, 371.
22. Heck, S. Forschungszent. Karlsruhe 1998, 1.
23. Edwards, J. P.; West, S. J.; Marschke, K. B.; Mais, D. E.;
Gottardis, M.; Jones, T. K. J. Med. Chem. 1998, 41,
303.
24. Edwards, J. P.; Zhi, L.; Pooley, C. L. F.; Tegley, C. M.;
West, S. J.; Wang, M. W.; Gottardis, M. M.; Pathirana,
C.; Schader, W. T.; Jones, T. K. J. Med. Chem. 1998, 41,
2779.
25. Zhi, L.; Tegley, C. M.; Edwards, J. P.; West, S. J.;
Marschke, K. B.; Gottardis, M. M.; Mais, D. E.; Jones,
T. K. Bioorg. Med. Chem. Lett. 1998, 8, 3365.
26. Zhi, L.; Tegley, C. M.; Pio, B.; Edwards, J. P.; Jones,
T. K.; Marschke, K. B.; Mais, D. E.; Risek, B.; Schrader,
W. T. Bioorg. Med. Chem. Lett. 2003, 13, 2071.
27. Zhi, L.; Ringgeberg, J. D.; Edwards, J. P.; Tegley, C. M.;
West, S. J.; Pio, B.; Motamedi, M.; Jones, T. K.;
Marschke, K. B.; Mais, D. E.; Schrader, W. T. Bioorg.
Med. Chem. Lett. 2003, 13, 2075.
28. Zhi, L.; Tegley, C. M.; Pio, B.; Edwards, J. P.; Motamedi,
M.; Jones, T. K.; Marschke, K. B.; Mais, D. E.; Risek, B.;
Schrader, W. T. J. Med. Chem. 2003, 46, 4104.
29. Coghlan, M. J.; Kym, P. R.; Elmore, S. W.; Wang, A. X.;
Luly, J. R.; Wilcox, D.; Stashko, M.; Lin, C. W.; Miner,
J.; Tyree, C.; Nakane, M.; Jacobson, P.; Lane, B. C. J.
Med. Chem. 2001, 44, 2879.
References and notes
1. Ali, S. L. Anal. Profiles Drug Subst. Excipients 1992, 21,
415.
2. Cohen, E. M. Anal. Profiles Drug Subst. 1973, 2, 163.
3. Schimmer, B. P., Parker, K. L. In Goodman and Gilman’s
The Pharmacological Basis of Therapeutics, 9th ed. Hard-
man, J. G., Limbird, L. E., Molinoff, P. B., Ruddon,
R. W., Gilman, A. G. Eds.; McGraw-Hill: New York,
1996, pp 1459-1485.
4. Gennari, C. Br. J. Rheumatol. 1993, 32, 11.
5. Andrews, R. C.; Walker, B. R. Clin. Sci. 1999, 513.
6. Remesar, X.; Fernandez-Lopez, J. A.; Alemany, M. Med.
Res. Rev. 1993, 13, 623.
30. Kym, P. R.; Kort, M. E.; Coghlan, M. J.; Moore, J. L.;
Tang, R.; Ratajczyk, J. D.; Larson, D. P.; Elmore, S. W.;