Organic Letters
Letter
(5) For reviews of catalyzed propargylic substitution, see:
(a) Ljungdahl, N.; Kann, N. Transition Metal Catalyzed Propargylic
Substitution. Angew. Chem., Int. Ed. 2009, 48, 642. (b) Detz, R. J.;
Hiemstra, H.; van Maarseveen, J. H. Catalyzed Propargylic
Substitution. Eur. J. Org. Chem. 2009, 2009, 6263. (c) Miyake, Y.;
Uemura, S.; Nishibayashi, Y. Catalytic Propargylic Substitution
Reactions. ChemCatChem 2009, 1, 342. (d) Ding, C. H.; Hou, X.
L. Catalytic Asymmetric Propargylation. Chem. Rev. 2011, 111, 1914.
(e) Nishibayashi, Y. Transition-Metal-Catalyzed Enantioselective
Propargylic Substitution Reactions of Propargylic Alcohol Derivatives
with Nucleophiles. Synthesis 2012, 2012, 489. (f) Bauer, E. Transition-
metal-catalyzed functionalization of propargylic alcohols and their
derivatives. Synthesis 2012, 44, 1131. (g) Hu, X. H.; Liu, Z. T.; Shao,
H.; Hu, X. P. Recent Advances in Catalytic Stereocontrolled
Cycloaddition with Terminal Propargylic Compounds. Synthesis
2015, 47, 913. (h) Zhang, D. Y.; Hu, X. P. Recent Advances in
Copper-catalyzed Propargylic Substitution. Tetrahedron Lett. 2015,
56, 283. (i) Roy, R.; Saha, S. Scope and Advances in the Catalytic
Propargylic Substitution Reaction. RSC Adv. 2018, 8, 31129.
(6) For selected examples, see: (a) Detz, R. J.; Delville, M. M. E.;
Hiemstra, H.; van Maarseveen, J. H. Enantioselective Copper-
Catalyzed Propargylic Amination. Angew. Chem., Int. Ed. 2008, 47,
3777. (b) Hattori, G.; Matsuzawa, H.; Miyake, Y.; Nishibayashi, Y.
Copper-Catalyzed Asymmetric Propargylic Substitution Reactions of
Propargylic Acetates with Amines. Angew. Chem., Int. Ed. 2008, 47,
3781. (c) Hattori, G.; Sakata, K.; Matsuzawa, H.; Tanabe, Y.; Miyake,
Y.; Nishibayashi, Y. Copper-Catalyzed Enantioselective Propargylic
Amination of Propargylic Esters with Amines: Copper-Allenylidene
Complexes as Key Intermediates. J. Am. Chem. Soc. 2010, 132, 10592.
(d) Zhang, C.; Hu, X. H.; Wang, Y. H.; Zheng, Z.; Xu, J.; Hu, X. P.
Highly Diastereo- and Enantioselective Cu-Catalyzed [3 + 3]
Cycloaddition of Propargyl Esters with Cyclic Enamines toward
Chiral Bicyclo[n.3.1] Frameworks. J. Am. Chem. Soc. 2012, 134, 9585.
(e) Zhu, F. L.; Zou, Y.; Zhang, D. Y.; Wang, Y. H.; Hu, X. H.; Chen,
S.; Xu, J.; Hu, X. P. Enantioselective Copper-Catalyzed Decarbox-
ylative Propargylic Alkylation of Propargyl β-Ketoesters with a Chiral
Ketimine P,N,N-Ligand. Angew. Chem., Int. Ed. 2014, 53, 1410.
(f) Zhu, F. L.; Wang, Y. H.; Zhang, D. Y.; Xu, J.; Hu, X. P.
Enantioselective Synthesis of Highly Functionalized Dihydrofurans
through Copper Catalyzed Asymmetric Formal [3 + 2] Cycloaddition
of β-Ketoesters with Propargylic Esters. Angew. Chem., Int. Ed. 2014,
53, 10223. (g) Nakajima, K.; Shibata, M.; Nishibayashi, Y. Copper-
Catalyzed Enantioselective Propargylic Etherification of Propargylic
Esters with Alcohols. J. Am. Chem. Soc. 2015, 137, 2472. (h) Shao, W.;
Li, H.; Liu, C.; Liu, C. J.; You, S. L. Copper-Catalyzed Intermolecular
Asymmetric Propargylic Dearomatization of Indoles. Angew. Chem.,
Int. Ed. 2015, 54, 7684. (i) Tsuchida, K.; Senda, Y.; Nakajima, K.;
Nishibayashi, Y. Construction of Chiral Tri- and Tetra-Arylmethanes
Bearing Quaternary Carbon Centers: Copper-Catalyzed Enantiose-
lective Propargylation of Indoles with Propargylic Esters. Angew.
Chem., Int. Ed. 2016, 55, 9728. (j) Li, R. Z.; Tang, H.; Yang, K. R.;
Wan, L. Q.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. W. Enantioselective
Propargylation of Polyols and Desymmetrization of meso 1,2-Diols by
Copper/Borinic Acid Dual Catalysis. Angew. Chem., Int. Ed. 2017, 56,
7213. (k) Xu, H.; Laraia, L.; Schneider, L.; Louven, K.; Strohmann,
C.; Antonchick, A. P.; Waldmann, H. Highly Enantioselective
Catalytic Vinylogous Propargylation of Coumarins Yields a Class of
Autophagy Inhibitors. Angew. Chem., Int. Ed. 2017, 56, 11232.
(l) Zhang, K.; Lu, L. Q.; Yao, S.; Chen, J. R.; Shi, D. Q.; Xiao, W. J.
Enantioconvergent Copper Catalysis: In Situ Generation of the Chiral
Phosphorus Ylide and Its Wittig Reactions. J. Am. Chem. Soc. 2017,
Tertiary Propargylic Sulfones. Angew. Chem., Int. Ed. 2019, 58, 3903.
(p) Zhang, Z. J.; Zhang, L.; Geng, R. L.; Song, J.; Chen, X. H.; Gong,
L. Z. N-Heterocyclic Carbene/Copper Cooperative Catalysis for the
Asymmetric Synthesis of Spirooxindoles. Angew. Chem., Int. Ed. 2019,
58, 12190.
(7) For examples of the application of α-substituted nitroacetates in
asymmetric catalysis, see: (a) Ohmatsu, K.; Ito, M.; Kunieda, T.; Ooi,
T. Ion-paired Chiral Ligands for Asymmetric Palladium Catalysis.
Nat. Chem. 2012, 4, 473. (b) Singh, A.; Johnston, J. N. A Diastereo-
and Enantioselective Synthesis of α-Substituted syn-α,β-Diamino
Acids. J. Am. Chem. Soc. 2008, 130, 5866. (c) Chen, Z. H.; Morimoto,
H.; Matsunaga, S.; Shibasaki, M. A Bench-Stable Homodinuclear
Ni2−Schiff Base Complex for Catalytic Asymmetric Synthesis of α-
Tetrasubstituted anti-α,β-Diamino Acid Surrogates. J. Am. Chem. Soc.
2008, 130, 2170. (d) Uraguchi, D.; Koshimoto, K.; Ooi, T. Chiral
Ammonium Betaines: A Bifunctional Organic Base Catalyst for
Asymmetric Mannich-Type Reaction of α-Nitrocarboxylates. J. Am.
Chem. Soc. 2008, 130, 10878. (e) Han, B.; Liu, Q. P.; Li, R.; Tian, X.;
Xiong, X. F.; Deng, J. G.; Chen, Y. C. Discovery of Bifunctional
Thiourea/Secondary-Amine Organocatalysts for the Highly Stereo-
selective Nitro-Mannich Reaction of α-Substituted Nitroacetates.
Chem. - Eur. J. 2008, 14, 8094. (f) Li, H. M.; Wang, Y.; Tang, L.; Wu,
F. H.; Liu, X. F.; Guo, C. Y.; Foxman, B. M.; Deng, L.
Stereocontrolled Creation of Adjacent Quaternary and Tertiary
Stereocenters by a Catalytic Conjugate Addition. Angew. Chem., Int.
Ed. 2005, 44, 105. (g) Clemenceau, A.; Wang, Q.; Zhu, J. P.
Enantioselective Synthesis of Quaternary α-Amino Acids Enabled by
the Versatility of the Phenylselenonyl Group. Chem. - Eur. J. 2016, 22,
18368.
(8) For an example of modification of oxazoline-based ligands at C5,
see: Tsutsumi, K.; Itagaki, K.; Nomura, K. Synthesis and Structural
Analysis of Palladium(II) Complexes Containing Neutral or Anionic
C2-Symmetric Bis(oxazoline) Ligands: Effects of Substituents in the
5-Position. ACS Omega 2017, 2, 3886.
(9) α,α-Disubstituted amino ester 5ac is a known compound
reported by Zhang and co-workers. See: (a) Huo, X. H.; Zhang, J. C.;
Fu, J. K.; He, R.; Zhang, W. B. Ir/Cu Dual Catalysis: Enantio- and
Diastereodivergent Access to α,α-Disubstituted α-Amino Acids
Bearing Vicinal Stereocenters. J. Am. Chem. Soc. 2018, 140, 2080.
The diastereoisomer of 5ak was reported by Trost and co-workers.
See: (b) Trost, B. M.; Dogra, K. Synthesis of Novel Quaternary
Amino Acids Using Molybdenum-Catalyzed Asymmetric Allylic
Alkylation. J. Am. Chem. Soc. 2002, 124, 7256 See the Supporting
Information for details about determination of the stereochemistry..
(11) Tong, S.; Piemontesi, C.; Wang, Q.; Wang, M. X.; Zhu, J. P.
Silver-Catalyzed Three-Component 1,1-Aminoacylation of Homo-
propargylamines: α-Additions for Both Terminal Alkynes and
Isocyanides. Angew. Chem., Int. Ed. 2017, 56, 7958.
́
139, 12847. (m) Gomez, J. E.; Guo, W.; Gaspa, S.; Kleij, A. W.
Copper-Catalyzed Synthesis of γ-Amino Acids Featuring Quaternary
Stereocenters. Angew. Chem., Int. Ed. 2017, 56, 15035. (n) Fu, Z.;
Deng, N.; Su, S. N.; Li, H.; Li, R. Z.; Zhang, X.; Liu, J.; Niu, D. W.
Diastereo- and Enantioselective Propargylation of 5H-Thiazol-4-ones
and 5H-Oxazol-4-ones as Enabled by Cu/Zn and Cu/Ti Catalysis.
́
̀
Angew. Chem., Int. Ed. 2018, 57, 15217. (o) Gomez, J. E.; Cristofol,
A.; Kleij, A. W. Copper-Catalyzed Enantioselective Construction of
̀
E
Org. Lett. XXXX, XXX, XXX−XXX