ORGANIC
LETTERS
2011
Vol. 13, No. 9
2502–2505
Tailor-Made Hexaethylene Glycolic Ionic
Liquids as Organic Catalysts for Specific
Chemical Reactions
Vinod H. Jadhav, Hwan-Jeong Jeong, Seok Tae Lim, Myung-Hee Sohn, and
Dong Wook Kim*
Department of Nuclear Medicine, Cyclotron Research Center, Chonbuk National
University Medical School, Jeonju, Jeonbuk 561-712, Korea
Received March 21, 2011
ABSTRACT
Hexaethylene glycol substituted imidazolium based ionic liquids (hexaEGILs) were designed and prepared well-tailored to a specific organic
reaction using alkali-metal fluorides (MFs) as multifunctional organic catalysts. These hexaEGIL catalysts could significantly enhance the
reactivity of MF, even KF. Furthermore, the hexaEGIL systems showed tremendous efficiency in the nucleophilic fluorination of base-
sensitive substrates.
Due to several attractive properties, room temperature
ionic liquids (ILs) containing bulky organic cations
paired with their counteranions have attracted interest
as eco-friendly alternative reaction solvent systems
(compared to conventional volatile solvent systems)
for a variety of applications in chemistry, including
reaction acceleration, separation, and nanotechnology.1
Moreover, because ILs are highly tunable, they can be
tailored to meet specific needs by making simple struc-
tural modifications on either the cation or anion
component.1,2 It is well-known that imidazolium based
IL solvent systems perform well in nucleophilic substitu-
tions (including fluorination), when using alkali-metal
salts as nucleophile sources, through the phase transfer
catalyst (PTC) effect of IL reaction media.3
Among various organic transformations, the use of nu-
cleophilic fluorination to introduce a single fluorine atom at
a specific molecular site is regarded as an important organic
transformation reaction in the field of medicinal chemistry
and, in particular, the area of [18F]radiopharmaceutical
research involved with positron emission tomography
(PET) studies.4 For this purpose, alkali metal fluorides
(MFs) such as KF are generally used with various PTCs in
polar aprotic solvents (e.g., CH3CN, DMF).5 However, due
(3) (a) Kim, D. W.; Song, C. E.; Chi, D. Y. J. Am. Chem. Soc. 2002,
124, 10278–10279. (b) Kim, D. W.; Song, C. E.; Chi, D. Y. J. Org. Chem.
2003, 68, 4281–4285. (c) Kim, D. W.; Choe, Y. S.; Chi, D. Y. Nucl. Med.
Biol. 2003, 30, 345–350. (d) Kim, D. W.; Chi, D. Y. Angew. Chem., Int.
Ed. 2004, 43, 483–485. (e) Kim, D. W.; Hong, D. J.; Jang, K. S.; Song,
C. E.; Chi, D. Y. Adv. Synth. Catal. 2006, 348, 1719–1727.
(4) (a) O’Hagan, D.; Schaffrath, C.; Cobb, S. L.; Hamilton, J. T. G.;
Murphy, C. D. Nature 2002, 416, 279. (b) Special Issue: Fluorine in the
Life Sciences in ChemBioChem 2004, 5, 557À726. (c) Ametamey, S. M.;
Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501–1516.
(5) (a) Gerstenberger, M. R. C.; Haas, A. Angew. Chem., Int. Ed.
1981, 20, 647–667. (b) Mascaretti, O. A. Aldrichimica Acta 1993, 26, 47–
58. (c) Dehmlow, E. V.; Dehmlow, S. S. Phase Transfer Catalysis, 3rd ed.;
VCH Ltd.: New York, 1993. (d) Pilcher, A. S.; Ammon, H. L.; DeShong, P. J.
Am. Chem. Soc. 1995, 117, 5166–5167.
(1) (a) Zhao, H.; Malhotra, S. V. Aldrichimica Acta 2002, 35, 75–83.
(b) Wasserscheid, P.; Kein, W. Angew. Chem., Int. Ed. 2000, 39, 3772–
3789. (c) Welton, T. Chem. Rev. 1999, 99, 2071–2083. (d) Tzschucke,
C. C.; Markert, C.; Bannwarth, W.; Roller, S.; Hebel, A.; Haag, R.
Angew. Chem., Int. Ed. 2002, 41, 3964–4000.
(2) (a) Tesfai, A.; El-Zahab, B.; Bwambok, D. K.; Baker, G. A.;
Fakayode, S. O.; Lowry, M.; Warner, I. M. Nano Lett. 2008, 8, 897–901.
(b) Dupont, J.; Suarez, P. A. Z. Phys. Chem. Chem. Phys. 2006, 8, 2441–
2452. (c) Revelli, A. L.; Mutelet, F.; Jaubert, J. N.; Garcia-Martinez, M.;
Sprunger, L. M.; Acree, W. E., Jr.; Baker, G. A. J. Chem. Eng. Data
2010, 55, 2434–2443. (d) Schrekker, H. S.; Stracke, M. P.; Schrekker,
C. M. L.; Dupont, J. Ind. Eng. Chem. Res. 2007, 46, 7389–7392.
r
10.1021/ol200751e
Published on Web 04/13/2011
2011 American Chemical Society