Methyl Derivatives of Titanium
Organometallics, Vol. 23, No. 9, 2004 2147
strained geometry” 5 and chelating diamide2a-d,i,j based
catalyst systems.
Sch em e 1
A variety of ligand systems based upon alkoxide or
aryloxide ligands have also been examined. This has
included the use of chelating phenoxide3,4,6 and alkox-
ide7 ligands. For example, Schaverien et al. have shown
that excellent stereocontrol of the resulting polymer can
be achieved using a chelating binaphthoxide catalyst.3a
A number of “constrained geometry” type catalysts
containing oxygen atom linkages to the metal center
have also been designed and studied.5b,8 Finally, a
number of ligand systems consisting of monodentate
aryloxide- or alkoxide-metal linkages have been stud-
ied. This includes results from our group on the isolation
and polymerization chemistry of [(ArO)2MR]+ species.9
In this paper we report upon the formation and struc-
ture of both neutral and cationic methyl compounds of
titanium containing both cyclopentadienyl and aryloxide
ligation.10-12 Studies by Nomura et al. have shown that
(2) (a) Scollard, J . D.; McConville, D. H. J . Am. Chem. Soc. 1996,
118, 10008. (b) Tsuie, B.; Swenson, D. C.; J ordan, R. F.; Petersen, J .
L. Organometallics 1997, 16, 1392. (c) Scollard, J . D.; McConville, D.
H.; Rettig, S. J . Organometallics 1997, 16, 1810. (d) Baumann, R.;
Davis, W. M.; Schrock, R. R. J . Am. Chem. Soc. 1997, 119, 3830. (e)
Go¨mez, R.; Green, M. L. H.; Haggitt, J . L. J . Chem. Soc., Chem.
Commun. 1994, 2607. (f) Friedrich, S.; Gade, L. H.; Edwards, A. J .;
McPartlin, M. J . Chem. Soc., Dalton Trans. 1993, 2861. (g) Brand, H.;
Capriotti, J . A.; Arnold, J . Organometallics 1994, 13, 4469. (h) Aoyagi,
K.; Gantzel, P. K.; Kalai, K.; Tilley, T. D. Organometallics 1996, 15,
923. (i) Cloke, F. G. N.; Geldbach, T. J .; Hitchcock, P. B.; Love, J . B. J .
Organomet. Chem. 1996, 506, 343. (j) J eon, Y.-M.; Park, S. J .; Heo, J .;
Kim, K. Organometallics 1998, 17, 3161. (k) Horton, A. D.; de With,
J .; van der Linden, A. J .; van de Weg, H. Organometallics 1996, 15,
2672. (l) Shah, S. A. A.; Dorn, H.; Voigt, A.; Roesky, H. W.; Parisini,
E.; Schmidt, H.-G.; Noltemeyer, M. Organometallics 1996, 15, 3176.
(m) Herskovics-Korine, D.; Eisen, M. S. J . Organomet. Chem. 1995,
503, 307.
(3) For the polymerization of olefins by bidentate aryloxides see: (a)
van der Linden, A.; Schaverien, C. J .; Meijboom, N.; Grant, C.; Orpen,
A. G. J . Am. Chem. Soc. 1995, 117, 3008. (b) Fokken, S.; Spaniol, T.
P.; Kang, H.-C.; Massa, W.; Okuda, J . Organometallics 1996, 15, 5069.
(c) For cationic zirconium alkyls supported by chelating phenoxides
see: Cozzi, P. G.; Gallo, E.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C.
Organometallics 1995, 14, 4994. (d) Bott, R. K. J .; Hughes, D. L.;
Schormann, M.; Bochmann, M.; Lancaster, S. J . J . Organomet. Chem.
2003, 665, 135. (e) Huang, J .; Lian, B.; Qian, Y.; Zhou, W.; Chen, W.;
Zheng, G. Macromolecules 2002, 35, 4871.
polymerization of ethylene and R-olefins can be achieved
with mixed [Cp(ArO)TiCl2] precursors treated with a
variety of activators.13 In this study emphasis is placed
upon the fluxionality of the compounds as well as their
thermal stability. Some aspects of this work have been
communicated previously.14
Resu lts a n d Discu ssion
Syn th esis a n d Ch a r a cter iza tion of Dim eth yl
Com p ou n d s. Treatment of the titanium dichlorides
[Cp(ArO)TiCl2] (1-6) with 2 equiv of [LiMe] in benzene
leads to the corresponding dimethyl compounds 9-14
as yellow solids (Scheme 1). Similar treatment of
[Cp*(ArO)TiCl2] (7, 8) with 2 equiv of [LiMe] afforded
the dimethyl compounds 15 and 16. The 2,3,5,6-tet-
raphenylphenoxide and 2,6-dimethylphenoxide deriva-
tives 17 and 19 and their corresponding 4-bromo
analogues 18 and 20, as well as the 2,6-diisopropyl-
phenoxide species 21,15 were prepared via an alter-
(4) Groysman, S.; Goldberg, I.; Kol, M. Organometallics 2003, 22,
3015 and references therein.
(5) (a) Devore, D. D.; Timmers, F. J .; Hasha, D. L.; Rosen, R. K.;
Marks, T. J .; Deck, P. A.; Stern, C. L. Organometallics 1995, 14, 3132.
(b) Chen, Y.-X.; Marks, T. J . Organometallics 1997, 16, 3649. (c) Duda,
L.; Erker, G.; Frohlich, R.; Zippel, F. Eur. J . Inorg. Chem. 1998, 1153.
(d) Blais, M. S.; Chien, J . C. W.; Rausch, M. D. Organometallics 1998,
17, 3775.
(6) (a) Thorn, M. G.; Fanwick, P. E.; Chesnut, R. W.; Rothwell, I. P.
Chem. Commun. 1999, 2543. (b) Turner, L. E.; Thorn, M. G.; Fanwick,
P. E.; Rothwell, I. P., Chem. Commun. 2003, 1034. (c) Thorn, M. G.;
Parker, J . R.; Fanwick, P. E.; Rothwell, I. P. Organometallics 2003,
22, 4658. (d) Turner, L. E.; Swartz, R. D.; Thorn, M. G.; Chesnut, R.
W.; Fanwick, P. E.; Rothwell, I. P. J . Chem. Soc., Dalton Trans., 2003,
4580. (e) Turner, L. E.; Thorn, M. G.; Fanwick, P. E.; Rothwell, I. P.
Organometallics, 2004, 23, 1576.
(13) (a) Nomura, K.; Oya, K.; Komatsu, T.; Imanishi, Y. Macromol-
ecules 2000, 33, 3187. (b) Nomura, K.; Oya, K.; Komatsu, T.; Imanishi,
Y. Macromolecules 2000, 33, 8122. (c) Nomura, K.; Okumura, H.;
Komatsu, T.; Naga, N. Macromolecules 2002, 35, 5388. (d) Nomura,
K.; Naga, N.; Miki, M.; Yanagi, K. Macromolecules 1998, 31, 7588. (e)
Nomura, K.; Oya, K.; Imanishi, Y. J . Mol. Catal. A 2001, 174, 127-
140. (f) Nomura, K.; Komatsu, T.; Imanishi, Y. J . Mol. Catal. A 2000,
159, 127-137. (g) Nomura, K.; Komatsu, T.; Imanishi, Y. J . Mol. Catal.
A 2000, 152, 249-252. (h) Nomura, K.; Naga, N.; Miki, M.; Yanagi,
K.; Imai, A. Organometallics 1998, 17, 2152-2154. (i) Imanishi, Y.;
Nomura, K. J . Polym. Sci. A: Polym. Chem. 2000, 38, 4613-4626. (j)
Nomura, K.; Fudo, A. Catal. Commun. 2003, 4, 269-274. (k) Nomura,
K.; Tsubota, M.; Fujiki, M. Macromolecules 2003, 36, 3797-3799. (l)
Nomura, K.; Fudo, A. Inorg. Chim. Acta 2003, 345, 37-43. (m)
Nomura, K.; Okumura, H.; Komatsu, T.; Naga, N.; Imanishi, Y. J . Mol.
Catal. A 2002, 190, 225-234.
(7) Mack, H.; Eisen, M. S. J . Chem. Soc., Dalton Trans. 1998, 917.
(8) Gielens, E. E. C. G.; Tiesnitsch, J . Y.; Hessen, B.; Teuben, J . H.
Organometallics 1998, 17, 1652.
(9) (a) Thorn, M. G., Etheridge, Z. C., Fanwick, P. E., Rothwell, I.
P. Organometallics 1998, 17, 3636. (b) Thorn, M. G.; Etheridge, Z. C.;
Fanwick, P. E.; Rothwell, I. P. J . Organomet. Chem. 1999, 591, 148.
(10) (a) Thorn, M. G.; Vilardo, J . S.; Lee, J . T.; Hanna, B.; Fanwick,
P. E.; Rothwell, I. P. Organometallics 2000, 19, 5636. (b) Vilardo, J .
S.; Thorn, M. G.; Fanwick, P. E.; Rothwell, I. P. Chem. Commun. 1998,
2425. (c) Thorn, M. G.; Vilardo, J . S.; Lee, J .; Hanna, B.; Fanwick, P.
E.; Rothwell, I. P. Organometallics 2000, 19, 5636. (d) Thorn, M. G.;
Lee, J .; Fanwick, P. E.; Rothwell, I. P. Dalton 2002, 3398. (e) Lee, J .;
Fanwick, P. E.; Rothwell, I. P. Organometallics 2003, 22, 1546.
(11) Sturla, S. J .; Buchwald, S. L. Organometallics 2002, 21, 739-
748.
(14) Thorn, M. G., Vilardo, J . S., Fanwick, P. E., Rothwell, I. P.
Chem. Commun. 1998, 2427.
(12) Firth, A. F.; Stewart, J . C.; Hoskin, A. J .; Stephan, D. W. J .
Organomet. Chem. 1999, 591, 185-193.
(15) An alternative procedure for the synthesis of 21 has been
reported.12