FULL PAPER
S. Xie, Inorg. Chem. 2012, 51, 12521; j) M. Li, L. Zhang, M.
Yang, J. Niu, J. Zhou, Bioorg. Med. Chem. Lett. 2012, 22, 2418.
[18] M. Du, Z.-H. Zhang, X. J. Zhao, Q. Xu, Inorg. Chem. 2006,
45, 5785.
[19] K. H. Al-Obaidi, B. F. Ali, R. Abu-El-Halawa, A. Abo-Amer,
Trans. Met. Chem. 2004, 29, 804.
[20] a) S.-Z. Zhang, Z.-H. Zhang, C.-P. Li, M. Du, Inorg. Chem.
Commun. 2009, 12, 1038; b) A. Bharti, M. Bharty, S. Kashyap,
U. Singh, R. Butcher, N. Singh, Polyhedron 2013, 50, 582; c)
Y.-T. Wang, G.-M. Tang, W.-Y. Ma, W.-Z. Wan, Polyhedron
2007, 26, 782; d) Z.-H. Zhang, C.-P. Li, Y.-L. Tian, Y.-M. Guo,
Inorg. Chem. Commun. 2008, 11, 326.
0.85 mmol) and phenylbismuth dichloride (0.15 g, 0.42 mmol) were
reacted according to GP7 yielding an orange precipitate of 12, yield
0.24 g, 61%; m.p. 206 °C (dec.). 1H NMR (400 MHz, [D6]DMSO):
δ = 9.01 (d, 2 H, HaЈ), 8.35 (s, 2 H, Hc), 8.02 (d, 4 H, Hg), 7.96 (t,
2 H, HbЈ), 7.73 (d, 4 H, Hh), 7.50 (t, 1 H, HcЈ) ppm. 13C NMR
(100 MHz, [D6]DMSO): δ = 166.6 (Ce), 159.6 (Cb), 140.6 (Cd),
139.3 (CaЈ), 133.1 (CbЈ), 131.1 (Ci), 127.9 (CaЈ), 126.9 (Cg), 126.1
(q, CF3), 123.4 (Cc) ppm. FT-IR: ν = 1618 (m), 1431 (s), 1326 (m),
˜
1222 (m), 1065 (s), 953 (s), 773 (s), 726 (s), 687 (m), 637 (m) cm–1.
ESI-MS+ (solvent: DMSO/MeOH, 35 eV): m/z 966 (52%, [BiPhL2
+ Na]+), 209 (60%, [Bi]+). ESI-MS– (solvent: DMSO/MeOH,
35 eV): m/z 974 (68%, [BiPhL2 + CH3O]–), 678 (8%, [BiPhL +
(CH3O)2]–). C30H15BiF6N6O2S4 (942.70): calcd. C 38.22, H 1.60, N
8.91; found C 38.24, H 1.65, N 9.11.
[21] N. Singh, M. Bharty, R. Dulare, R. Butcher, Polyhedron 2009,
28, 2443.
[22] M. Du, Z.-H. Zhang, X.-J. Zhao, Q. Xu, Inorg. Chem. 2006,
45, 5785.
[23] a) C. Beghidja, G. Rogez, R. Welter, New J. Chem. 2007, 31,
1403; b) N. K. Singh, M. K. Bharty, S. K. Kushawaha, R. Dul-
are, R. J. Butcher, Trans. Met. Chem. 2010, 35, 337.
[24] F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58,
380.
[25] C. Ma, G. Tian, R. Zhang, Inorg. Chim. Acta 2007, 360, 1762.
[26] C.-L. Ma, G.-R. Tian, R.-F. Zhang, Polyhedron 2005, 24, 1773.
[27] a) E. Hoggsrth, J. Chem. Soc. 1952, 4811; b) M. A. Khali,
S. M. El-Khawass, M. G. Kassem, Scientia Pharmaceutica
1980, 48, 344; c) M. Belkadi, A. A. Othman, ARKIVOC
(Gainesville, FL, U.S.) 2006, 11; d) J. Sandstrom, I. Wenner-
beck, Acta Chem. Scand. 1966, 20, 57.
Acknowledgments
The authors thank the Australian Research Council
(DP110103812) and Monash University, Australia for financial as-
sistance.
[1] R. R. Gupta, M. Kumar, V. Gupta, Heterocyclic Chemistry,
Five-membered heterocycles, Springer, India, 2005.
[2] N. Soni, J. P. Barthwal, T. K. Gupta, Indian Drugs 1982, 23.
[3] X. W. Sun, H. T. Liang, Z. Y. Zhang, Ind. J. Chem. B 1998, 38,
679.
[4] M. Amir, S. Shahani, Ind. J. Heterocycl. Chem. 1998, 8, 107.
[5] Nizamudalin, M. H. Khan, A. Shafqat, Ind. J. Chem. B 1999,
38, 76.
[28]
[29]
A. Manaka, M. Sato, Synth. Commun. 2005, 35, 761.
A. Luqman, V. L. Blair, R. Brammananth, P. K. Crellin, R. L.
Coppel, P. C. Andrews, Chem. Eur. J. 2014, 20, 14362.
[30] a) J. P. Charmant, A. M. Jahan, N. C. Norman, A. G. Orpen,
Inorg. Chim. Acta 2005, 358, 1358; b) M. Bao, T. Hayashi, S.
Shimada, Dalton Trans. 2004, 2055.
[6] B. N. Goswami, J. C. Kataky, M. M. Datta, Ind. J. Chem. B
1984, 23, 796.
[7] R. S. Varma, V. Bajpai, Ind. J. Heterocycl. Chem. 1999, 8, 281.
[8] A. A. Savarino, Expert Opin. Invest. Drugs 2006, 15, 1507.
[9] N. D. James, J. W. Growcott, Drugs Future 2009, 34, 624.
[10] a) H. Foks, D. Pancechowska-Ksepko, M. Janowiec, Z. Zwol-
ska, Acta Pol. Pharm. 2004, 61, 473; b) V. N. Atemov, O. P.
Shaika, Chem. Heterocycl. Compd. 1971, 7, 844.
[11] S. S. Edram, G. A. Ozpinar, M. T. Sacan, J. Mol. Struct. 2005,
726, 233.
[31] A. Luqman, V. L. Blair, A. M. Bond, P. C. Andrews, Angew.
Chem. 2013, 125, 7388.
[32] a) T. M. File Jr., Infect. Dis. Clin. Prac. 2011, 19, 207; b) S. J.
Hal, D. L. Paterson, Antimicrob. Agents Chemother. 2011, 55,
405; c) E. Y. Choi, J. W. Huh, C.-M. Lim, Y. Koh, S.-H. Kim,
S.-H. Choi, Y. S. Kim, M.-N. Kim, S.-B. Hong, Intensive Care
Med. 2011, 37, 639; d) S. Satola, F. Lessa, S. Ray, S. Bulens,
R. Lynfield, W. Schaffner, G. Dumyati, J. Nadle, J. Patel, J.
Clin. Microbiol. 2011, 49, 1583.
[33] a) P. C. Andrews, M. Busse, G. B. Deacon, R. L. Ferrero, P. C.
Junk, K. K. Huynh, I. Kumur, J. G. MacLellan, Dalton Trans.
2010, 39, 9633; b) P. C. Andrews, M. Busse, G. B. Deacon,
R. L. Ferrero, P. C. Junk, J. G. MacLellan, A. Vom, Dalton
Trans. 2012, 41, 11798; c) V. André, A. Hardeman, I. Halasz,
R. S. Stein, G. J. Jackson, D. G. Reid, M. J. Duer, C. Curfs,
M. T. Duarte, T. Frisˇcˇic´, Angew. Chem. 2011, 123, 8004.
[34] P. J. Brennan, D. C. Crick, Curr. Top. Med. Chem. 2007, 7, 475.
[35] A. Luqman, V. L. Blair, R. Brammananth, P. K. Crellin, R. L.
Coppel, L. Kedzierski, P. C. Andrews, Eur. J. Inorg. Chem.
2015, 725–733.
[12] a) D. A. Charistos, G. V. Vagenas, L. C. Tzavellas, C. A. Tsoler-
idis, N. A. Rodios, J. Heterocycl. Chem. 1994, 31, 1593; b) S.
Vijayaraghavan, R. R. Somani, P. Y. Shirodkar, V. J. Kadam,
Int. J. PharmTech Res. 2009, 1, 811; c) D. H. Boschelli, D. T.
Connor, D. A. Bornemeier, J. Med. Chem. 1993, 36, 1802.
[13] R. Gudipati, R. N. R. Anreddy, S. Manda, Saudi Pharm. J.
2011, 19, 153.
[14] M. A. Al-Omar, Molecules 2010, 15, 502.
[15] Y. T. Wang, G. M. Tang, Inorg. Chem. Commun. 2007, 10, 53.
[16] F. Aydogan, Z. Turgut, N. Ocal, S. S. Erdem, Turkish J. Chem.
2002, 26, 159.
[17] a) P. Domenico, L. Baldassarri, P. E. Schoch, K. Kaehler, M.
Sasatsu, B. A. Cunha, Antimicrob. Agents Chemother. 2001, [36] T. M. McPhillips, S. E. McPhillips, H.-J. Chiu, A. E. Cohen,
1617; b) D. E. Mahoney, S. Lim-Morrison, L. Bryden, G.
Faulkner, P. S. Hoffman, L. Agocs, G. G. Briand, N. Burford,
H. Maguire, Antimicrob. Agents Chemother. 1999, 582; c) T. [37] W. Kabsch, J. Appl. Crystallogr. 1993, 26, 795.
Kotani, D. Nagai, K. Asahi, H. Suzuki, F. Yamao, N. Kataoka,
T. Yagura, Antimicrob. Agents Chemother. 2005, 2729; d)
H. P. S. Chauhan, N. M. Shaik, U. P. Singh, Appl. Organomet. [39] G. Sheldrick, Institute for Inorganic Chemistry, University of
A. M. Deacon, P. J. Ellis, E. Garman, A. Gonzalez, N. K. Sau-
ter, R. P. Phizackerley, J. Synchrotron Radiat. 2002, 9, 401.
[38] CrysAlisPro, v. 1.171.34.36, Oxford Diffraction Ltd. (Agilent
Technologies), Oxfordshire, UK, 2010.
Chem. 2005, 19, 1132; e) A. R. Badireddy, B. R. Korpol, S.
Chellam, P. L. Gassman, M. H. Engelhard, A. S. Lea, K. M.
Rosso, Biomacromolecules 2008, 9, 3079; f) R. Ge, Z. Chen, Q.
Zhou, Metallomics 2012, 4, 239; g) J. A. Lessa, D. C. Reis, J. G.
Da Silva, L. T. Paradizzi, N. F. da Silva, M. Fátima, A. Carv-
alho, S. A. Siqueira, H. Beraldo, Chem. Biodivers. 2012, 9,
1955; h) M. Li, Y. Lu, M. Yang, Y. Li, L. Zhang, S. Xie, Dalton
Trans. 2012, 41, 12882; i) M. Li, M. Yang, J. Niu, L. Zhang,
Göttingen, 1996, 65.
[40] B. Popsavin, L. Torovic, B. Kojic, G. Bogdanovic, V. Popsavina,
Bioinorg. Med. Chem. Lett. 2006, 16, 761.
[41] B. Furniss, A. Hannaford, P. Smith, A. Tatchell, Vogel’s Text-
book of Practical Organic Chemistry ELBS and Longman,
London, 2004.
Received: May 20, 2015
Published Online: September 11, 2015
Eur. J. Inorg. Chem. 2015, 4935–4945
4945
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim