(see ESIw). Similar flexible molecules capable of intramolecular
edge-to-face aromatic interactions are known to interconvert
rapidly between ‘‘crowded’’ and ‘‘remote’’ limiting geometries
on the NMR timescale at experimentally accessible temperatures.
In that analysis, lower temperatures favor a more crowded
geometry, enhancing edge-to-face aromatic interactions and a
contracted structure. At higher temperatures, entropy apparently
disfavors the edge-to-face interaction, promoting a more remote
geometry and an expanded structure; intermediate conformations
would be expected over the observed temperature range. In either
case, the conformations exist in a fast equilibrium; the observed
NMR shift is a weighted average of the populations of all
conformers present.20 For As2L3, the remote geometry corres-
ponds to a gable-like conformation of the diphenylmethane
spacer at room temperature, while the crowded geometry ob-
served at lowered temperatures corresponds to a more skew-like
conformation. As the structure of more expanded conformations
is not yet understood, it would be premature to calculate
thermodynamic parameters from this data.
1 S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000, 100,
853.
2 D. L. Caulder and K. N. Raymond, J. Chem. Soc., Dalton Trans.,
1999, 1185.
3 F. Hof, C. Nuckolls, J. Rebek, Jr and S. L. Craig, Angew. Chem.,
Int. Ed., 2002, 41, 1488.
4 A. V. Davis, R. M. Yeh and K. N. Raymond, Proc. Natl. Acad.
Sci. U. S. A., 2002, 99, 4793; M. D. Pluth and K. N. Raymond,
Chem. Soc. Rev., 2007, 36, 161.
5 M. A. Pitt and D. W. Johnson, Chem. Soc. Rev., 2007, 36, 1441.
6 H. Schmidbaur, W. Bublak, B. Huber and G. Muller, Angew.
Chem., 1987, 99, 248; H. Schmidbaur, R. Nowak, O. Steigelmann
and G. Muller, Chem. Ber., 1990, 123, 1221.
7 W. J. Vickaryous, R. Herges and D. W. Johnson, Angew. Chem.,
Int. Ed., 2004, 43, 5831.
8 W. J. Vickaryous, E. R. Healey, O. B. Berryman and D. W.
Johnson, Inorg. Chem., 2005, 44, 9247; T. A. Shaikh, S. Parkin
and D. A. Atwood, J. Organomet. Chem., 2006, 691, 4167.
9 This value is estimated from As–S bond strengths in AsxSy poly-
hedra: D. Babıc, S. Rabii and J. Bernholc, Phys. Rev. B: Condens.
Matter Mater. Phys., 1989, 39, 10831. Bond strengths are known
for other As–E bonds but are not reported for E = S in Chemistry
of Arsenic Antimony and Bismuth, ed. N. C. Norman, Blackie
Academic & Professional, London, 1988.
10 R. W. Alder and S. P. East, Chem. Rev., 1996, 96, 2097; V. M.
Cangelosi, L. N. Zakharov, S. T. Fontenot, M. A. Pitt and D. W.
Johnson, Dalton Trans., 2008, 3447.
11 D. J. Cram and H. Steinberg, J. Am. Chem. Soc., 1951, 73, 5691; H.
Steinberg and D. J. Cram, J. Am. Chem. Soc., 1952, 74, 5388.
12 J. W. Steed and J. L. Atwood, Supramolecular Chemistry, Wiley,
Chichester, 2000.
13 As2L3: degassed KOH (0.1023 N in MeOH) was added to H2L
under N2. The solution was heated to 50 1C and AsCl3 in benzene
was added dropwise. Heating was continued for 3 h; the solution
was then filtered to remove white precipitate. The solvent was
removed, yielding 12% of the desired product. 1H-NMR (500
MHz; CD2Cl2; ꢀ20 1C): d 7.03 (d, J = 7.5 Hz, 12 H), 6.98 (d, J
= 7.5 Hz, 12 H), 4.01 (s, 6H), 3.62 (s, 12H). 13C-NMR (126 MHz;
CD2Cl2; ꢀ20 1C): d 140.45, 138.00, 129.71, 129.56, 41.28, 35.94;
m/z (APCI) found 924.8 (As2L3+, C45H42As2S6 requires 924.00).
14 M. Albrecht and R. Frohlich, Bull. Chem. Soc. Jpn., 2007, 80, 797.
15 T. Schaefer, W. Niemczura, W. Danchura and T. A. Wildman, Can.
J. Chem., 1979, 57, 1881; T. Straßner, Can. J. Chem., 1997, 75, 1011.
16 E. A. Meyer, R. K. Castellano and F. Diederich, Angew. Chem.,
Int. Ed., 2003, 42, 1210.
In summary, weak forces such as edge-to-face aromatic and
arsenic–p interactions play an important role in determining the
solution and solid-state structures of supramolecular complexes.
In particular, the arsenic–p interaction appears to persist in the
presence of flexible ligand scaffolds, showing that it is an im-
portant component of arsenic ligand design and can itself be
considered an emerging supramolecular interaction. The varying
strength and geometry in the crystal structure and the tempera-
ture dependence of these weak aromatic interactions in solution
have been shown to dramatically affect the structure of a new
As2L3 assembly with a flexible ligand scaffold. In particular, we
have observed expansion and contraction or ‘‘breathing’’ of the
host in solution over a range of temperatures. This may have
significant implications in the design of expanded arsenic-contain-
ing host structures—the addition of conformationally mobile
spacer units may play a role in determining the size, shape, and
exchange mechanism of guests.
17 S. T. Mough, J. C. Goeltz and K. T. Holman, Angew. Chem., Int.
Ed., 2004, 43, 5631.
The University of Oregon and an NSF-CAREER award
(CHE-0545206) are gratefully acknowledged for their support.
D.W.J is a Cottrell Scholar of Research Corporation. M.A.P
acknowledges the National Science Foundation (NSF) for an
Integrative Graduate Education and Research Traineeship. K.V.,
W.H.T. and B.B.L. gratefully acknowledge support from the
National Science Foundation through a SBIR/STTY supplement
to grant EEC-0310689 providing for the University of Kansas
Center for Environmentally Beneficial Catalysis.
18 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N.
Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V.
Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J.
B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J.
J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M.
C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghava-
chari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A.
Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M.
W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and
J. A. Pople, GAUSSIAN 03 (Revision C.02), Gaussian, Inc.,
Wallingford, CT, 2004.
Notes and references
y Crystal data for As2L3: C45H42As2S6, Mr = 942.99, 0.18 ꢃ 0.14 ꢃ
0.08 mm, monoclinic, P21/n, a = 14.5184(16) A, b = 12.9661(14) A,
c = 23.094(3) A, b = 106.773(2)1, V = 4162.3(8) A3, Z = 4, rcalcd
=
1.476 g cmꢀ3, m = 1.939 mmꢀ1, 2ymax = 54.001, T = 173(2) K, 37 996
measured reflections, 9082 independent reflections [Rint = 0.0644], 478
parameters, R1 and wR2 = 0.0414 and 0.0835 (I 4 2s(I)); 0.0678 and
0.0954 (all), GOF = 1.013 for all 9082 reflections, max/min residual
electron density +0.483/ꢀ0.340 e Aꢀ3. CCDC 685997.
19 It is important to note that the weak edge-to-face aromatic
interactions evidenced in both the DFT geometries and crystal
structures are likely not dispersion-based CH–p interactions, since
DFT does not properly describe such forces; see, e.g.: M. O.
Sinnokrot and C. D. Sherrill, J. Phys. Chem. A, 2006, 110, 10656.
20 W. B. Jennings, B. M. Farrell and J. F. Malone, Acc. Chem. Res.,
2001, 34, 885.
z There are two common methods for quantifying aromatic edge-to-
face contacts. Meyer et al.16 refer to centroidꢁ ꢁ ꢁcentroid distances,
while Jennings et al.20 refer to Ar–Hꢁ ꢁ ꢁcentroid distances. We utilize
the former method.
ꢂc
This journal is The Royal Society of Chemistry 2008
3938 | Chem. Commun., 2008, 3936–3938