Page 7 of 9
Journal of the American Chemical Society
52. This paper describes the isomerization of tertiary N-allyl am-
ACKNOWLEDGMENT
1
2
3
4
5
6
7
8
ides to enamides, providing enamides with generally modest E:Z
selectivities from 95:5 to 20:80. There is a single example that
reports 0:100 E:Z (compound 2d), however the compound is not
reported in the experimental and we were unable to find any addi-
tional experimental information.
22. CH3CN ligands are readily displaced providing highly unsatu-
rated catalyst upon solvation. For review see: Trost, B. M.; Fred-
eriksen, M. U.; Rudd, M. T. Angew. Chem. Int. Ed. 2005, 44,
6630–6666.
23 Trost, B. M.; Cregg, J. J. J. Am. Chem. Soc. 2015, 137, 620–
623.
24. (a) Hashimoto, T.; Nakatsu, H.; Takiguchi, Y.; Maruoka, K. J.
Am. Chem. Soc. 2013, 135, 16010–16013. (b) For the synthesis of
the enamide see: Fisher, L. E.; Muchowski, J. M.; Clark, R. D. J.
Org. Chem. 1992, 57, 2700.
25. Min, G. K.; Skrydstrup, T. J. Org. Chem. 2012, 77, 5894–
5906.
26. (a) Tu, S.; Zhang, C. Org. Process Res. Dev. 2015, 19, 2045–
2049. (b) Lei, M.; Ma, L.; Hu, L. Tetrahedron Lett. 2010, 51,
4186–4188.
27. Lin, Z.; Schmidt E. W. J. Med. Chem. 2011, 54, 3746–3755.
28. In this case methyl vs. ethyl would need to be differentiated.
Attempting to differentiate benzyl from phenyl for the synthesis
of tetrasubstituted vinyl triflates has been shown. However it is
extremely sensitive to electronics of the aromatic ring. D. J. Wal-
lace; Campos K. R.; Shultz C. S.; Spindler F. Org. Process Res.
Dev., 2009, 13, 84–90.
We thank the NIH (GM-033049) and the NSF (NSF CHE-
1360634) for their generous support of our programs.
REFERENCES
1. Gopalaiah, K.; Kagan, H. B. Chem. Rev. 2011, 111, 4599–
4657.
2. Courant, T.; Dagousset, G.; Masson, G. Synthesis 2015, 47,
1799–1856.
3. Song, Z.; Ting, L.; Hsung, R.P.; Ziyad A. F.; Changhong K.;
Yu T. Angew. Chem. Int. Ed. 2007, 46, 4069–4072.
4. Alix, A.; Lalli C.; Retailleau P.; Masson, G. J. Am. Chem. Soc.
2012, 134, 10389–10392.
5. Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128,
4592–4593.
6. Terada, M.; Machioka, K.; Sorimachi, K. Angew. Chem. Int.
Ed. 2006, 45, 2254–2257.
7. Bai, X.-Y.; Wang, Z.-X.; Li, B.-J. Angew. Chem. Int. Ed. 2016,
55, 9007–9011.
8. a) Martín, M. J.; Cuevas C. J. Am. Chem. Soc. 2013, 135,
10164–10171. b) Lin, S.; Danishefsky, S. J. J. Am. Chem.
Soc., 2004, 126, 6347–6355 c) Kuranaga, T.; Sesoko, Y.; Inoue,
M. Nat. Prod. Rep. 2014, 31, 514–532.
9. Shen, R.; Lin, C. T.; Bowman, E. J.; Bowman, B. J.; Porco, J.
A. J. Am. Chem. Soc. 2003, 125, 7889–7901.
10. Evano, G.; Silvanus A. Tetrahedron 2014, 70, 1529–1616.
11. Gourdet, B.; Lam, H. W. J. Am. Chem. Soc. 2009, 131, 3802–
3803.
12. Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J.
Chem. Rev. 2015, 115, 2596–2697.
13. Ogawa, T.; Kiji, T.; Hayami, K.; Suzuki, H. Chem. Lett. 1991,
20, 1443–1446.
14. Shen, R.; Porco, J. A. Org. Lett. 2000, 2, 1333–1336.
15. Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett.
2003, 5, 3667–3669.
16. Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809–1812.
17. Wallace, D. J.; Spindler F. Org. Process Res. Dev. 2009, 13,
84–90.
18. (a) Krompiec, S.; Krompiec, M.; Penczek, R.; Ignasiak, H.
Coord. Chem. Rev. 2008, 252, 1819–1841. (b) For the only exam-
ple of secondary N-allyl amides to E-enamides (>20:1): Larsen,
C. R.; Grotjahn, D. B. J. Am. Chem. Soc. 2012, 134, 10357–
10360.
19. (a) Chen, C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J.;
Holland, P. L. J. Am. Chem. Soc. 2014, 136, 945–955. (b)
Schmidt, A.; Nödling, A. R.; Hilt, G. Angew. Chem. Int. Ed. 2015,
54, 801–804. (c) Clark, H. C.; Kurosawa, H. Inorg. Chem. 1973,
12, 1566–1569. (d) Sato, T.; Komine, N.; Hirano, M.; Komiya, S.
Chem. Lett. 1999, 28, 441–442.
20. (a) Ohmura, T.; Oshima, K.; Suginome, M. Angew. Chem. Int.
Ed. 2011, 50, 12501–12504. (b) Larsen, C. R.; Grotjahn, D. B. J.
Am. Chem. Soc. 2012, 134, 10357–10360. (c) Lim, H. J.; Smith,
C. R.; RajanBabu, T. V. J. Org. Chem. 2009, 74, 4565–4572. (d)
Wang, K.; Bungard, C. J.; Nelson, S. G. Org. Lett. 2007, 9, 2325–
2328
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
29. Yus, M.; González-Gómez, J. C.; Foubelo, F. Chem. Rev.
2011, 111, 7774–7854.
30. (a) Brozek, L. A.; Ardolino, M. J.; Morken, J. P. J. Am. Chem.
Soc. 2011, 133, 16778–16781. (b) Yang, Y.; Buchwald, S. L. J.
Am. Chem. Soc. 2013, 135, 10642–10645.
31. Moure, A. L.; Mauleón, P.; Arrayás, R. G.; Carretero, J. C.
Org. Lett. 2013, 15, 2054–2057.
32. Shirakawa, K.; Arase, A.; Hoshi, M. Synthesis 2004, 1814–
1820.
33. In comparison, we found:
O
O
12% CpRu(CH3CN)3PF6
HN
HN
DMF, rt, 16h
13
~30% conversion
34. For an early example of heteroatom substituted allylating
reagent: Wuts, P. G. M.; Bigelow, S. S. J. Org. Chem. 1982, 47,
2498–2500.
35. Barrett, A. G. M.; Seefeld, M. A.; White, A. J. P.; Williams,
D. J. J. Org. Chem. 1996, 61, 2677–2685.
36. Hoffmann, R.W.; Brückner, D.; Gerusz, J.V. HETEROCY-
CLES 200, 52, 121.
37. Example of cyclic substrate: Lessard, S.; Peng, F.; Hall, D. G.
J. Am. Chem. Soc. 2009, 131, 9612–9613.
38. See Supporting Information for additional details.
39. (a) G.D. Martino; P. D. Caprariis; A. Enrico, M. G.; Rimoli, J.
Heterocyclic Chem. 1990, 27, 507-509. (b) X. Zhou; W. J. Liu; J.
L. Ye; P. Q. Huang J. Org. Chem. 2007, 72, 8904–8909. (c)
Matsumura, Y.; Ohishi, T.; Sonoda, C.; Maki, T.; Watanabe, M.
Tetrahedron 1997, 53, 4579–4592.
40. Clark, A. J.; Zhang H.; J. Org. Chem. 2016, 81, 5547–5565.
41. (a) Jung, M. E.; Karama, U. Tetrahedron Lett. 1999, 40,
7907–7910(b) Suzuki, K.; Miyazawa, M.; Shimazaki, M.; Tsuchi-
hashi, G. Tetrahedron 1988, 44, 4061–4072. (c) Zweifel, G.;
Najafi, M. R.; Rajagopalan, S. Tetrahedron Lett. 1988, 29, 1895–
1897. (d) Schulte-Elte, K. H.; Ohloff, G. Helv. Chim. Acta 1967,
50, 153–165.
21. (a) Krompiec, S.; Pigulla, M.; Kuznik, N.; Krompiec, M.;
Marciniec, B.; Chadyniak, D.; Kasperczyk, J. J. Mol. Catal. A:
Chem. 2005, 225, 91-101. (b) Also see: Stille, J. K.; Becker, Y. J.
Org. Chem. 1980, 45, 2139–2145. This paper describes the isom-
erization of allyl acetamide, which favors the cis isomer ("as the
major product the cis isomer") at 80% conversion, however the
authors do not provide a magnitude (E:Z). Using the same catalyst
system but using Toluene in order to increase the temperature and
obtain full conversion a Z:E ratio of 2:1 is reported. (c) Reeves, J.
T.; Tan Z.; Marsini M. A.; Han Z. S.; Xu Y.; Reeves D. C.; Lee
H.; Lu B. Z.; Senanayake C. H. Adv. Synth. Catal. 2013, 355, 47–
42. Intramolecular hydroborations involving activated BH2X (X=I
or OTf) reagents have proved more general. (a) Rarig, R.-A. F.;
Scheideman, M.; Vedejs, E. J. Am. Chem. Soc. 2008, 130, 9182–
ACS Paragon Plus Environment
7