Constantinos Tsangarakis, Manolis Stratakis
FULL PAPERS
1c: 1H NMR: d¼4.34 (br d, 2H), 2.47 (br s, 1H), 2.07 (s, 3H),
1.78 (m, 1H), 1.62 (m, 2H), 1.42 (m, 3H), 1.27 (m, 1H), 1.23 (s,
3H), 1.03 (s, 3H), 0.88 (s, 3H); 13C NMR: d¼170.96, 72.66,
63.52, 54.83, 42.42, 41.82, 34.14, 32.72, 24.04, 21.75, 21.26, 20.04.
2a: 1H NMR: d¼4.96 (br s, 1H), 4.76 (br s, 1H), 3.73 (dd, 1H,
J1 ¼11.0 Hz, J2 ¼5.0 Hz), 3.63 (dd, 1H, J1 ¼11.0 Hz, J2 ¼
11.0 Hz), 2.12 (m, 2H), 2.04 (m, 2H), 1.20–1.58 (m, 3H), 0.96
(s, 3H), 0.87 (s, 3H).
[9] A. Dyer, An Introduction to Zeolite Molecular Sieves,
Wiley, Bath, UK, 1988.
[10] V. Jayathirma Rao, D. L. Perlstein, R. J. Robbins, P. H.
Lakshminarasimhan, H.-M. Kao, C. P. Grey, V. Rama-
murthy, Chem. Commun. 1998, 269.
[11] H. W. G. van Herwijnen, U. H. Brinker, Tetrahedron
2002, 58, 4963.
[12] a) S. E. Sen, Y. Zhi Zhang, S. L. Roach, J. Org. Chem.
1996, 61, 9534; b) S. E. Sen, Y. Zhi Zhang, S. M. Smith,
J. Org. Chem. 1998, 63, 4459.
[13] Alcohol 1c reacted with LiAlH4 to form the correspond-
ing known diol 2c: T. Oritani, K. Yamashita, Agric. Biol.
Chem. 1987, 51, 1271.
[14] a) M. J. Quirin, M. Taran, B. Delmond, Can. J. Chem.
1996, 74, 1852; b) M. Bovolenta, F. Castronovo, A. Vada-
la, G. Zanoni, G. Vidari J. Org. Chem. 2004, 69, 8959.
[15] G. Carr, C. Dean, D. Whittaker, J. Chem. Soc. Perkin
Trans. 2 1989, 71.
2b: 1H NMR: d¼5.60 (br s, 1H), 3.75 (s, 2H), 2.00 (m, 2H),
1.75 (s, 3H), 1.45 (m, 1H), 1.20 (m, 1H), 1.03 (s, 3H), 0.89 (s, 3H).
2c: 1H NMR: d¼3.94 (m, 2H), 1.80 (m, 1H), 1.64 (m, 1H),
1.61 (m, 1H), 1.45 (m, 2H), 1.32–1.41 (m, 2H), 1.38 (s, 3H),
1.05 (s, 3H), 0.79 (s, 3H); 13C NMR: d¼74.87, 62.03, 56.03,
43.23, 42.22, 33.53, 32.87, 23.46, 21.61, 20.22.
3a: 1H NMR: d¼5.37 (br. t, 1H, J¼7.0 Hz), 4.96 (s, 1H), 4.85
(s, 1H), 4.60 (m, 2H), 4.02 (m, 1H), 2.17 (m, 2H), 2.05 (s, 3H),
1.77 (s, 3H), 1.74 (s, 3H), 1.63 (m, 2H); 13C NMR: d¼171.14,
147.39, 142.29, 119.58, 111.04, 75.04, 61.06, 33.13, 28.00, 23.32,
21.06, 17.69.
5c: 1H NMR: d¼5.46 (br s, 1H), 2.07 (dd, 2H, J1 ¼13.0 Hz,
J2 ¼2.0 Hz), 2.00 (m, 2H), 1.84 (br s, 1H), 1.71 (m, 1H), 1.18–
1.51 (m, 5H), 1.22 (s, 3H), 0.92 (s, 3H), 0.87 (s, 3H); 13C
NMR: d¼137.36, 122.01, 70.26, 49.82, 47.24, 38.95, 33.28,
31.10, 29.24, 28.00, 25.97, 25.02, 22.75.
[16] Y. Yamada, H. Sanjoh, K. Iguchi, J. Chem. Soc. Chem.
Commun. 1976, 997.
[17] The spectroscopic data of by-product 3a are identical
with that of the secondary allylic alcohol produced
from the reaction of neryl acetate with singlet oxygen
(1O2) and subsequent reduction of the allylic hydroper-
oxides with PPh3. Photooxygenation of neryl acetate is
locoselective giving a mixture of secondary and tertiary
allylic hydroperoxides (ca. 1/1) from the exclusive reac-
tion of less hindered gem-dimethyl double bond.
Acknowledgements
This work was supported by the Greek General Secretariat of
Research and Technology (PENED 2001).
References and Notes
[1] I. Abe, M. Rohmer, G. D. Prestwich, Chem. Rev. 1993,
93, 2189.
[2] a) A. Eschenmoser, L. Ruzicka, O. Jeger, D. Arigoni,
Helv. Chim. Acta 1955, 38, 1890; b) E. E. van Tamelen,
Pure Appl. Chem. 1981, 53, 1259; c) K. U. Wendt, G. E.
Schulz, E. J. Corey, D. R. Liu, Angew. Chem. Int. Ed.
2000, 39, 2812.
[3] V. A. Stair, A. V Semenovskii, V. F. Kucherov, Izv. Akad.
Nauk. SSSR, Ser. Khim. 1962, 470; Chem. Abstr. 1962, 57,
62913.
[4] P. F. Vlad, Pure Appl. Chem. 1993, 65, 1329.
[5] H. Ishibashi, K. Ishihara, H. Yamamoto, Chem. Rec.
2002, 2, 177.
[6] a) A. J. McCarroll, J. C. Walton, Angew. Chem. Int. Ed.
2001, 40, 2224; b) J. Justicia, A. Rosales, E. Bunuel,
J. L. Oller-Lopez, M. Valdivia, A. Haidour, E. J. Oltra,
A. Barrero, D. J. Cardenas, J. M. Cuerva, Chem. Eur. J.
2004, 10, 1778.
[18] M. Stratakis, M. Stavroulakis, N. Sofikiti, J. Phys. Org.
Chem. 2003, 16, 16.
[19] a) W. H. Zhu, E. L. Clennan, Chem. Commun. 1999,
2261; b) I. Casades, M. Alvaro, H. Garcia, M. Espla,
Chem. Commun. 2001, 982.
[20] H. Akita, M. Nozawa, A. Mitsuda, H. Ohsawa, Tetrahe-
dron: Asymmetry 2000, 11, 1375.
[21] K. H. Schulte-Elte, G. Ohloff, Helv. Chim. Acta 1975, 58,
18.
[22] T. Okachi, M. Onaka, J. Am. Chem. Soc. 2004, 126, 2306.
[23] G. A. Kraus, J. Kim, Org. Lett. 2004, 6, 3115.
[24] a) P. Weyerstahl, H. Marschall. M. Weirauch, K. Thefeld,
H. Suburg, Flav. Fragnance J. 1998, 13, 295; b) C. Demet-
zos, T. Anastasaki, D. Perdetzoglou, J. Biosc. 2002, 57,
89.
[25] a) O. Takazawa, H. Tamura, K. Kogami, K. Kazuo,
Chem. Lett. 1980, 10, 1257; b) M. Yamashita, K. Nishii,
M. Yamashita, Chem. Express 1989, 4, 33; c) P. Naegeli,
Y. Wirz-Habersack, S. Duebendorf, Tetrahedron: Asym-
metry 1992, 3, 221.
[7] V. Rosales, J. Zambrano, M. Demuth, Eur. J. Org. Chem.
2004, 1798.
[8] a) M. P. Polovinka, D. V. Korchagina, Y. U. Gatilov, I. Y.
Bagriaanskaya, V. A. Barkhash, V. V. Shcherbukhin,
N. S. Zevirov, V. B. Perutskii, N. D. Ungur, P. F. Vlad, J.
Org. Chem. 1994, 59, 1509; b) P. J. Linares-Palomino, S.
Salido, J. Altarejos, A. Sanchez, Tetrahedron Lett. 2003,
44, 6651.
[26] J. H. Clark, Acc. Chem. Res. 2002, 35, 791.
1284
ꢁ 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
asc.wiley-vch.de
Adv. Synth. Catal. 2005, 347, 1280–1284