Although the details must be confirmed, we favor a
mechanism whereby the silyl anion, formed via successive
one-electron transfers from Cr(II),21 adds to the aldehyde to
give R-hydroxysilane 21 which undergoes chromium Brook
rearrangement to organochromium 22 (Figure 1). Numerous
other metals and nonmetals are known to undergo similar
transformations.22 Subsequent addition of 22 to a second
equivalent of aldehyde furnishes pinacol 23. The isolation
of trans-diol 20 as the sole product in entry 18 suggests that
cyclic chromate ester 24, which cannot form in this case, is
the obligate intermediate for elimination to olefin 25. As
would be anticipated from this mechanistic hypothesis,
heating the aldehyde and CrCl2 or silyl chloride together for
several hours prior to addition of the remaining ingredients
does not yield olefinic adducts. However, good yields of
adduct are obtained when the silyl chloride and CrCl2 are
heated together for several hours followed by addition of
the aldehyde.
Figure 1. Proposed chromium Brook rearrangement.
bromide (9, entry 13),14 methylenedioxy (11, entry 14),15,16
benzyl/methyl ethers (13, entry 15),17 and, surprisingly, an
unprotected phenol (15, entry 16).18 The conjugated aldehyde
cinnamaldehyde (17) was also well behaved and led to triene
18 (entry 17).19 However, aliphatic aldehydes and unhindered
ketones principally afforded aldol products under the same
reaction conditions. The intramolecular condensation of
dialdehyde 19 gave rise unexpectedly to trans-diol 20 (entry
18),20 presumably because it could not close to form the
cyclic chromium diester necessary for elimination (vide
infra).
These data reveal a novel entry into an otherwise unat-
tainable class of functionalized chromium anions. Efforts to
exploit them as reagents for organic synthesis will be detailed
elsewhere.
Acknowledgment. Financial support from the CNRS,
Ministe`re de la Jeunesse, de l’Education Nationale et de la
Recherche, the Robert A. Welch Foundation, and NIH
(GM31278, DK38226) is gratefully acknowledged.
(10) 2,2′-(E)-Difluorostilbene: Dunne, E. C.; Coyne, E. J.; Crowley, P.
B.; Gilheany, D. G. Tetrahedron Lett. 2002, 43, 2449.
(11) 2,2′-(Z)-Difluorostilbene: Aitken, R. A.; Hodgson, P. K. G.;
Morrison, J J.; Oyewale, A. O. J. Chem. Soc., Perkin Trans. 1 2002, 402.
(12) 4,4′-(E)-Dimethylstilbene: Grasa, G. A.; Singh, R.; Stevens, E. D.;
Nolan, S. P. J. Organomet. Chem. 2003, 687, 269.
Supporting Information Available: Spectra and/or gas
chromatograms of 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20. This
material is available free of charge via the Internet at
(13) 1,1′-(E)-1,2-Ethenediylbisnaphthalene: Satoh, T.; Hanaki, N.; Ya-
mada, N.; Asano, T. Tetrahedron 2000, 56, 6223.
(14) 2,2′-(E)-Dibromostilbene: Barman, D. C.; Thakur, A. J.; Prajapati,
D.; Sandhu, J. S. Synlett 2001, 515.
OL0607140
(15) 1,1′-Bis(3,4-methylenedioxy)-(E)-stilbene: Ali, R. S.; Jagtap, P. G.
Synth. Commun. 1991, 21, 841.
(16) 1,1′-Bis(3,4-methylenedioxy)-(Z)-stilbene: Jiang, Q.; He, L.; He,
G.; Zheng, S.-l. Hecheng Huaxue 2004, 12, 267.
(17) 1,1′-Bis(3-methoxy-4-benzyloxy)-(E)-stilbene: Brezny, R.; Puffle-
rova, A. Collect. Czech. Chem. Commun. 1978, 43, 3263.
(18) 4,4′-(E)-Dihydroxystilbene: Ali, M. A.; Kondo, K.; Tsuda, Y. Chem.
Pharm. Bull. 1992, 40, 1130.
(19) 1,6-Diphenyl-(E,E,E)-1,3,5-hexatriene: Doyle, M. P.; Yan, M. J.
Org. Chem. 2002, 67, 602.
(20) trans-9,10-Dihydro-9,10-phenanthrenediol: Mori, K.; Ohtaka, S.;
Uemura, S. Bull. Chem. Soc. Jpn. 2001, 74, 1497.
(21) (a) Kochi, J. K.; Davis, D. D. J. Am. Chem. Soc. 1964, 86, 5264.
(b) Kochi, J. K.; Singleton, D. M. J. Am. Chem. Soc. 1968, 90, 1582.
(22) (a) Stanna Brook: Paleo, M. R.; Calaza, M. I.; Grana, P.; Sardina,
F. Org. Lett. 2004, 6, 1061. (b) Phospha Brook: El Kaim, L.; Gaultier, L.;
Grimaud, L.; Dos Santos, A. Synlett 2005, 15, 2335. (c) Lithium Brook:
Nakazaki, A.; Nakai, T.; Tomooka, K. Angew. Chem., Int. Ed. 2006, 45,
2235.
Org. Lett., Vol. 8, No. 14, 2006
2951