Organic Letters
Letter
trimethoxyphenyl)methylene)bis(trimethylsilane) 1l with sulfi-
nylimine 3m provided the therapeutic Z-6af in high yield and
with excellent geometrical purity. Notably, the phenol group was
tolerated, avoiding the need for functional group protection.
Moreover, the promising anticancer agent DMU-212 was
prepared from 1l and the E-favoring 1-(4-methoxyphenyl)-N-
phenylmethanimine 2e (Scheme 7).
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the European Research Association ERA-Chemistry
and the Irish Research Council (IRC) for financial support.
Identification of the exact mechanistic pivot point for N-
sulfinyl- and N-phenyl imine Z/E stereocontrol requires further
investigation, but some useful observational conclusions can be
drawn at this stage. Based on our previous findings that addition
of substituted benzyltrimethylsilanes to sulfinyl imines is highly
diastereoselective,14 it could be anticipated that (arylmethylene)-
bistrimethylsilanes 1 would also be, thereby primarily setting the
stereochemical outcome of the reaction at the addition step. This
poses the question as to whether a four-membered 1-aza-2-
silacyclobutane or a six-membered 1,2,3,6-azathiazasilinane
intermediate is formed as a result of this addition. Tamao et al.
have demonstrated a concerted [2 + 2] cycloreversion
mechanism of substituted 1-aza-2-silacyclobutanes with reten-
tion of stereochemistry at the carbon atoms in the alkene
product.20 This would indicate that if a concerted [2 + 2]
addition (as proposed for PO with carbonyls21) of the α-silyl
carbanion with sulfinylimine was operating, the stereochemistry
fixed at the addition stage would be reflected in the alkene
product. Intriguingly, as Z-selectivity is observed for sulfinyl but
not sulfonyl imines, it is also plausible that a six-membered
azathiazasilinane TS (or intermediate) 7 could be operating as a
lower energy alternative pathway to the four-membered
azasilacyclobutane ring (Scheme 8). For N-aryl imines, as the
■
REFERENCES
■
(1) Takeda, T. Modern Carbonyl Olefination; Wiley-VCH, 2014.
(2) Oger, C.; Balas, L.; Durand, T. Chem. Rev. 2013, 113, 1313.
(3) Siau, W.-Y.; Zhang, Y.; Zhao, Y. Top. Curr. Chem. 2012, 327, 33.
(4) (a) Drost, R. M.; Bouwens, T.; van Leest, N. P.; de Bruin, B.;
Elsevier, C. J. ACS Catal. 2014, 4, 1349. (b) Slack, E. D.; Gabriel, C. M.;
Lipshutz, B. H. Angew. Chem., Int. Ed. 2014, 53, 14051.
(5) Cheung, C. W.; Zhurkin, F. E.; Hu, X. J. Am. Chem. Soc. 2015, 137,
4932.
(6) Basheer, A.; Marek, I. Beilstein J. Org. Chem. 2010, 6, 77.
(7) (a) Bronner, S. M.; Herbert, M. B.; Patel, P. R.; Marx, V. M.;
Grubbs, R. H. Chem. Sci. 2014, 5, 4091. (b) Koh, M. J.; Khan, R. K. M.;
Torker, S.; Yu, M.; Mikus, M. S.; Hoveyda, A. H. Nature 2015, 517, 181.
(8) (a) Zhuo, L.-G.; Yao, Z.-K.; Yu, Z.-X. Org. Lett. 2013, 15, 4634.
(b) Chen, C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J.; Holland, P.
L. J. Am. Chem. Soc. 2014, 136, 945.
(9) (a) Punner, F.; Schmidt, A.; Hilt, G. Angew. Chem., Int. Ed. 2012,
̈
51, 1270. (b) Singh, K.; Staig, S. J.; Weaver, J. D. J. Am. Chem. Soc. 2014,
136, 5275.
(10) (a) Gu, Y.; Tian, S.-K. Top. Curr. Chem. 2012, 327, 197. (b) Dong,
D.-J.; Li, Y.; Wang, J.-Q.; Tian, S.-K. Chem. Commun. 2011, 47, 2158.
(c) Dong, D.-J.; Li, H.-H.; Tian, S.-K. J. Am. Chem. Soc. 2010, 132, 5018.
(11) (a) Peterson, D. J. J. Org. Chem. 1968, 33, 780. (b) Hudrlik, P. F.;
Peterson, D. J. Am. Chem. Soc. 1975, 97, 1464. (c) van Staden, L. F.;
Gravestock, D.; Ager, D. J. Chem. Soc. Rev. 2002, 31, 195. (d) Ager, D. J.
Science of Synthesis 2010, 47a, 85.
Scheme 8. Plausible Pathways for Aza-POs
(12) Das, M.; Manvar, A.; Jacolot, M.; Blangetti, M.; Jones, R. C.;
O’Shea, D. F. Chem. - Eur. J. 2015, 21, 8737.
(13) (a) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010,
110, 3600. (b) Ferreira, F.; Botuha, C.; Chemla, F.; Perez-Luna, A.
Chem. Soc. Rev. 2009, 38, 1162.
(14) (a) Das, M.; O’Shea, D. F. Chem. - Eur. J. 2015, 21, 18717. (b) Das,
M.; O’Shea, D. F. Org. Lett. 2015, 17, 1962.
(15) The addition of organotrimethylsilanes under these conditions
may occur via an open transition state; see ref 14b.
(16) Manvar, A.; Fleming, P.; O’Shea, D. F. J. Org. Chem. 2015, 80,
8727.
(17) Morales, S.; Guijarro, F. G.; Garcia Ruano, J. L.; Cid, M. B. J. Am.
Chem. Soc. 2014, 136, 1082.
thermodynamic product is being formed, addition to form the
acyclic intermediate 8 with subsequent β-elimination could
selectively provide the trans-product.
In summary, we have demonstrated highly tunable stereo-
selective aza-Peterson olefinations with bench-stable bis-
(trimethylsilanes) and imine electrophiles, with silicon activation
achieved by trimethylsilyloxide in THF. Stereoselectivity of the
product alkene solely depends on the nature of the imine
employed. The more challenging Z-selectivity is obtained by the
use of N-sulfinyl imine electrophiles, potentially through a
unique pathway for olefination reactions. Further mechanistic
investigation of both the Z and E reaction pathway(s) is ongoing.
(18) Nam, N. H. Curr. Med. Chem. 2003, 10, 1697.
(19) Ma, Z.; Molavi, O.; Haddadi, A.; Lai, R.; Gossage, R. A.;
Lavasanifar, A. Cancer Chemother. Pharmacol. 2008, 63, 27.
(20) Tamao, K.; Nakagawa, Y.; Ito, Y. J. Am. Chem. Soc. 1992, 114, 218.
(21) Hudrlik, P. F.; Agwaramgbo, E. L. O.; Hudrlik, A. M. J. Org. Chem.
1989, 54, 5613.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
General experimental procedures and characterization
D
Org. Lett. XXXX, XXX, XXX−XXX