10.1002/anie.201812525
Angewandte Chemie International Edition
COMMUNICATION
[7] Z. Chai, J.-P. Bouillon, D. Cahard, Chem. Commun. 2012, 48, 9471-9473.
[8] a) S. Kenis, M. D'Hooghe, G. Verniest, M. Reybroeck, T. T. A. Dang, T. C.
Pham, P. T. Thi, K. W. Törnroos, V. T. Nguyen, N. De Kimpe, Chem. Eur. J.
2013, 19, 5966-5971; b) S. Kenis, M. D'Hooghe, G. Verniest, V. D. Nguyen, T.
A. D. Thi, T. V. Nguyen, N. D. Kimpe, Org. Biomol. Chem. 2011, 9, 7217-7223;
c) M. Moens, N. De Kimpe, M. D’Hooghe, J. Org. Chem. 2014, 79, 5558-5568.
[9] a) J. M. Concellꢀn, H. Rodrꢁguez-Solla, P. L. Bernad, C. Simal, J. Org. Chem.
2009, 74, 2452-2459; b) J. M. Concellꢀn, H. Rodrꢁguez-Solla, C. Simal, Org.
Lett. 2008, 10, 4457-4460; c) D. Savoia, G. Alvaro, R. Di Fabio, A. Gualandi, C.
Fiorelli, J. Org. Chem. 2006, 71, 9373-9381; d) J. A. Bull, T. Boultwood, T. A.
Taylor, Chem. Commun. 2012, 48, 12246-12248; e) T. Boultwood, D. P. Affron,
A. D. Trowbridge, J. A. Bull, J. Org. Chem. 2013, 78, 6632-6647; f) T. Boultwood,
J. A. Bull, Org. Lett. 2014, 16, 2740-2743. Multiple homologations of non-carbon
electrophiles - such as boron - with functionalized organolithiums have been
elegantly introduced by Aggarwal. See: g) M. Burns, S. Essafi, J. R. Bame, S.
P. Bull, M. P. Webster, S. Balieu, J. W. Dale, C. P. Butts, J. N. Harvey, V. K.
Aggarwal, Nature 2014, 513, 183-188; h) C. G. Watson, A. Balanta, T. G. Elford,
S. Essafi, J. N. Harvey, V. K. Aggarwal, J. Am. Chem. Soc. 2014, 136, 17370-
17373; i) S. Balieu, G. E. Hallett, M. Burns, T. Bootwicha, J. Studley, V. K.
Aggarwal, J. Am. Chem. Soc. 2015, 137, 4398-4403.
[10] a) K. Tamura, H. Mizukami, K. Maeda, H. Watanabe, K. Uneyama, J. Org.
Chem. 1993, 58, 32-35; b) K. Uneyama, H. Amii, T. Katagiri, T. Kobayashi, T.
Hosokawa, J. Fluor. Chem. 2005, 126, 165-171.
[11] For recent reviews on lithium carbenoids, see: a) V. Pace, W. Holzer, N. De
Kimpe, Chem. Rec. 2016, 16, 2061-2076; b) V. Capriati, S. Florio, Chem. Eur.
J. 2010, 16, 4152-4162; c) M. Braun, in The Chemistry of Organolithium
Compounds, Vol. 1 (Eds.: Z. Rappoport, I. Marek), John Wiley and Sons,
Chichester, 2004, pp. 829-900; d) V. H. Gessner, Chem. Commun. 2016, 52,
12011-12023.
In summary, we have documented the assembling of quaternary
all-substituted trifluoromethylaziridines via a single synthetic
operation consisting in the lithium halocarbenoids-mediated
mono- or bis-homologation of trifluoroacetimidoyl chlorides.
These easily accessible electrophilic substrates act as convenient
placeholders for installing up to two nucleophilic elements: the fine
tuning of the reaction stoichiometry accounts for excellent levels
of chemocontrol. As such, the use of an excess of homologating
agent enables to formally install two carbon units, namely the
methylene fragment of the aziridinyl ring and, the functionalizing
exocyclic halomethylenic moiety. Based on mechanistic
–
experimental evidences two different carbenoids can be
advantageously used for the process. Uniformly high yields,
superb chemoselectivity and efficiency make the overall
sequence a straightforward and modular route towards a new
class of chemical entities assembled and functionalized within a
unique synthetic event.
Acknowledgements
[12] V. Pace, L. Castoldi, E. Mazzeo, M. Rui, T. Langer, W. Holzer, Angew.
Chem. Int. Ed. 2017, 56, 12677-12682.
The University of Vienna is gratefully acknowledged for financial
support. L. Ielo and S. Touqeer thank OEAD for postdoctoral and
predoctoral grants, respectively. The Authors are indebted to
Albemarle Corporation and ABCR Germany for generous gifts of
organolithiums and fluoroiodomethane, respectively.
[13] For accounts on the authors' research on carbenoid chemistry, see:a) L.
Castoldi, S. Monticelli, R. Senatore, L. Ielo, V. Pace, Chem. Commun. 2018, 54,
6692-6704; b) V. Pace, L. Castoldi, S. Monticelli, M. Rui, S. Collina, Synlett 2017,
28, 879-888. Illuminating work on constructing complex, highly functionalized
molecular architectures with different organometallic species has been
developed by Marek. See for example: c) J. Bruffaerts, D. Pierrot, I. Marek, Nat.
Chem. 2018, 10, 1164–1170; d) S. Singh, J. Bruffaerts, A. Vasseur, I. Marek,
Nat. Commun. 2017, 8, 14200; e) A. Vasseur, J. Bruffaerts, I. Marek, Nat. Chem.
2016, 8, 209-219; f) I. Marek, Y. Minko, M. Pasco, T. Mejuch, N. Gilboa, H.
Chechik, J. P. Das, J. Am. Chem. Soc. 2014, 136, 2682-2694.
Keywords: Homologation • Aziridines • Carbenoid •
Trifluoromethylation • Chemoselectivity.
[14] S. Stanković, M. D’hooghe, J. Dewulf, P. Bogaert, R. Jolie, N. De Kimpe,
Tetrahedron Lett. 2011, 52, 4529-4532.
[15] R. H. V. Nishimura, V. E. Murie, R. A. Soldi, G. C. Clososki, Synthesis 2015,
47, 1455-1460.
References
[16] Z. Ke, Y. Zhou, H. Gao, C. Zhao, D. L. Phillips, Chem. Eur. J. 2007, 13,
6724-6731.
[1] For recent autorithative references on fluorinated scaffolds, see: a) N. A.
Meanwell, J. Med. Chem. 2018, 61, 5822-5880; b) E. P. Gillis, K. J. Eastman,
M. D. Hill, D. J. Donnelly, N. A. Meanwell, J. Med. Chem. 2015, 58, 8315-8359;
c) T. Liang, C. N. Neumann, T. Ritter, Angew. Chem. Int. Ed. 2013, 52, 8214-
8264; d) X. Yang, T. Wu, R. J. Phipps, F. D. Toste, Chem. Rev. 2015, 115, 826-
870; e) J. Charpentier, N. Früh, A. Togni, Chem. Rev. 2015, 115, 650-682; f) T.
Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470; g) M. Schlosser, Angew.
Chem. Int. Ed. 2006, 45, 5432-5446.
[2] For leading reviews on trifluoromethylaziridines, see: a) F. Meyer, Chem.
Commun. 2016, 52, 3077-3094; b) L. Degennaro, P. Trinchera, R. Luisi, Chem.
Rev. 2014, 114, 7881-7929; c) G. S. Singh, M. D'Hooghe, N. De Kimpe, Chem.
Rev. 2007, 107, 2080-2135; d) J. Dolfen, N. De Kimpe, M. D’Hooghe, Synlett
2016, 27, 1486-1510; e) A. K. Yudin, Aziridines and Epoxides in Organic
Synthesis, Wiley-VCH, Weinheim, 2006; f) J. B. Sweeney, Chem. Soc. Rev.
2002, 31, 247-258.
[17] a) N. De Kimpe, R. Verhe, L. De Buyck, N. Schamp, J. Org. Chem. 1980,
45, 5319-5325. For a seminal report on the reactivity of chloroaziridines with
nucleophiles, see: J. A. Deyrup, R. B. Greenwald, J. Am. Chem. Soc. 1965, 87,
4538-4545.
[18] a) G. Parisi, M. Colella, S. Monticelli, G. Romanazzi, W. Holzer, T. Langer,
L. Degennaro, V. Pace, R. Luisi, J. Am. Chem. Soc. 2017, 139, 13648-13651.
For additional recent studies on (fluorinated) carbenoids, see: b) S. Molitor, K.-
S. Feichtner, V. H. Gessner, Chem. Eur. J. 2017, 23, 2527-2531; c) S. Molitor,
V. H. Gessner, Angew. Chem. Int. Ed. 2016, 55, 7712-7716.
[19] A. K. Das, S. Park, S. Muthaiah, S. H. Hong, Synlett 2015, 26, 2517-2520.
[20] a) M. Giannerini, M. Fañanás-Mastral, B. L. Feringa, Nat. Chem. 2013, 5,
667-672; b) V. Pace, R. Luisi, ChemCatChem 2014, 6, 1516-1519.
[21] V. Pace, W. Holzer, B. Olofsson, Adv. Synth. Catal. 2014, 356, 3697-3736.
[22] S.-H. Xiang, J. Xu, H.-Q. Yuan, P.-Q. Huang, Synlett 2010, 1829-1832.
[23] a) T. Katagiri, M. Takahashi, Y. Fujiwara, H. Ihara, K. Uneyama, J. Org.
Chem. 1999, 64, 7323-7329; b) S. Stanković, M. D'Hooghe, S. Catak, H. Eum,
M. Waroquier, V. Van Speybroeck, N. De Kimpe, H.-J. Ha, Chem. Soc. Rev.
2012, 41, 643-665.
[3] F. Wang, N. Zhu, P. Chen, J. Ye, G. Liu, Angew. Chem. Int. Ed. 2015, 54,
9356-9360.
[4] a) Á. Mészáros, A. Székely, A. Stirling, Z. Novák, Angew. Chem. Int. Ed.
2018, 57, 6643-6647; b) R. Maeda, K. Ooyama, R. Anno, M. Shiosaki, T. Azema,
T. Hanamoto, Org. Lett. 2010, 12, 2548-2550.
[5] S. A. Künzi, B. Morandi, E. M. Carreira, Org. Lett. 2012, 14, 1900-1901.
[6] Y. Duan, B. Zhou, J.-H. Lin, J.-C. Xiao, Chem. Commun. 2015, 51, 13127-
13130.
This article is protected by copyright. All rights reserved.