KISELEV et al.
7
10. Beall HD, Murphy AM, Siegel D, Hargreaves RH, Butler J, Ross
D. Nicotinamide adenine dinucleotide (phosphate): quinone
oxidoreductase (DT-diaphorase) as a target for bioreductive
antitumor quinones: quinone cytotoxicity and selectivity in
human lung and breast cancer cell lines. Mol Pharmacol.
1995;48:499-504.
11. Filosa R, Peduto A, Aparoy P, et al. Discovery and biologi-
cal evaluation of novel 1,4-benzoquinone and related resorci-
nol derivatives that inhibit 5-lipoxygenase. Eur J Med Chem.
2013;67:269-279.
12. Kim MH, Jo SH, Ha KS, Song JH, Jang HD, Kwon YI. Antimi-
crobial activities of 1,4-benzoquinones and wheat germ extract.
J Microbiol Biotechnol. 2010;20:1204-1209.
13. Rubin W, Wassermann A. Kinetics of the cyclopentadiene-
chloranil reaction. A note on the configuration of transition
states in diene synthesis. J Chem Soc. 1950:2205-2207.
14. Ungnade HE, McBee ET. The chemistry of perchlorocy-
clopentenes and cyclopentadienes. Chem Rev. 1958;58:249-320.
15. Onishenko AS. Diene synthesis. Jerusalem: Israel Program for
Scientific Translations; 1964.
breaking of π-bonds entering into the reaction. This differ-
ence can be estimated from the difference in the enthalpy
of reactions of monocyclic 2,3-dicyano-p-benzoquinone
(10) (−79.4 kJ mol−1
)
and bicyclic dienophile,
N-phenylimide-1,4-benzoquinone-2,3-dicarboxylic acid
(−117.1 kJ mol−1) with the same diene, cyclopentadiene.
The cleavage energy of the π-bond of dienophile 11 is
reduced by 37.7 kJ mol−1 in comparison with dienophile
10 and this is the main reason for their unusual kinetic
behavior.
AC K N OW L E D G M E N T
This work was funded by the subsidy allocated to Kazan
Federal University for the state assignment in the sphere
of scientific activities, grant No. 0671-2020-0061.
C O N F L I C T O F I N T E R E S T
The authors declare no conflict of interest.
16. Dauben WG, Gerdes JM, Smith DB. Organic reactions at high
pressure. The preparative scale synthesis of cantharidin. J Org
Chem. 1985;50:2576-2578.
17. Grieco PA, Nunes JJ, Gaul MD. Dramatic rate accelerations
of Diels-Alder reactions in 5 M lithium perchlorate-diethyl
ether: the cantharidin problem reexamined. J Am Chem Soc.
1990;112:4595-4596.
DATA AVA I L A B I L I T Y S TAT E M E N T
Research data are not shared.
O RC I D
18. Sauer J, Diels-Alder reactions. I: the reaction mechanism. Ang
Chem Int Ed. 1966;6:16-33.
19. Kiselev VD, Miller JG. Experimental proof that the Diels-Alder
reaction of tetracyanoethylene with 9,10-dimethylanthracene
passes through formation of a complex between the reactants.
J Am Chem Soc. 1975;97:4036-4039.
20. Houk KN, Munchausen LL. Ionization potentials, electron
affinities, and reactivities of cyanoalkenes and related electron-
deficient alkenes. A frontier molecular orbital treatment of
cyanoalkene reactivities in cycloaddition, electrophilic, nucle-
ophilic, and radical reactions. J Am Chem Soc. 1976;98:937-946.
21. Chowdhury S, Kebarle P. Electron affinities of di- and tetra-
cyanoethylene and cyanobenzenes based on measurements
of gas-phase electron-transfer equilibria. J Am Chem Soc.
1986;108:5453-5459.
22. Kiselev VD, Iskhakova GG, Shtyrlin YG, Konovalov AI. Attempt
of the isolation of ethylenetetracarboxylic acid dianhydride
from its adduct with 9,10-dimethoxyanthracene. Zhurn Org
Khim. 1993;29:1111-1115. [Киселев ВД, Исхакова ГГ, Штырлин
ЮГ, Коновалов АИ. Попытка выделения диангидрида
этилентетракарбоновой кислоты из его аддукта с 9,10-
диметоксиантраценом. ЖОрХ, 1993;29:1111-1115].
R E F E R E N C E S
1. Kiselev VD, Konovalov AI. Internal and external factors influ-
encing the Diels-Alder reaction. J Phys Org Chem. 2009;22:466-
483.
2. Diels O, Alder K. Synthesen in der hydroaromatischen Reihe.
Lieb Ann Chem. 1928;460:98-122.
3. Benkhoff J, Boese R, Klärner F-G, Wigger AE. Synthesis of steri-
cally rigid macrocycles by the use of pressure-induced repetitive
Diels-Alder reactions. Tetrahedron Lett. 1994;35:73-76.
4. Mehta G, Reddy KR, Gleiter R, Lalitha S, Chandrasekhar J.
Roofed polyquinanes: synthesis and electronic structure. J Org
Chem. 1991;56:7048-7055.
5. Ashnagar A, Bruce JM. Synthesis of Diels-Alder Bis-Adducts
of Methoxycarbonyl-1,4-benzoquinone. Asian
2010;22:4602-4610.
J
Chem.
6. Winski SL, Hargreaves RH, Butler J, Ross DA. A new screening
system for NAD(P)H:quinone oxidoreductase (NQO1)-directed
antitumor quinones: identification of a new aziridinylbenzo-
quinone, RH1, as a NQO1-directed antitumor agent. Clin Cancer
Res. 1998;4:3083-3088.
7. Abraham I, Joshi R, Pardasani P, Pardasani RT. Recent advances
in 1,4-benzoquinone chemistry. J Braz Chem Soc. 2011;22:385-
421.
8. Lindsey RH, Bromberg KD, Felix CA. Osheroff N. 1,4-
Benzoquinone is a topoisomerase II poison. Biochemistry.
2004;43:7563-7574.
9. Lee C-S. Excision repair of 2,5-diaziridinyl-1,4-benzoquinone
(DZQ)-DNA adduct by bacterial and mammalian 3-
methyladenine-DNA glycosylases. Mol Cell. 2000;10:723-727.
23. Kiselev VD, Kornilov DA, Anikin OV, Sedov IA, Konovalov AI.
Kinetics and thermochemistry of the unusual [2π + 2σ + 2σ]-
cycloaddition of quadricyclane with some dienophiles. J Phys
Org Chem. 2017:e3737.
24. Kiselev VD, Kornilov DA, Anikin OV, Shulyatiev AA, Konovalov
AI. Reactivity variation of tetracyanoethylene and 4-phenyl-
1,2,4-triazoline-3,5-dione in cycloaddition reactions in solutions.
J Sol Chem. 2019;48:31-44.
25. Reichardt C. Solvents and Solvent Effects in Organic Chemistry.
New York: Wiley; 1988.