C O M M U N I C A T I O N S
T.A.B. is grateful for a graduate research fellowship from the
Department of Defense. Professor Seth N. Brown provided several
2
stimulating discussions on the topic of dz .
Supporting Information Available: Synthetic protocols and
characterization data; crystallographic data including a CIF file;
spectroscopic data; details for DFT study. This material is available
References
(1) (a) Groves, J. T.; Han, Y.-Z. Cytochrome P450: Structure, Mechanism,
and Biochemistry; Ortiz de Montellano, P. R., Ed.; Plenum Press: New
York, 1995; pp 3-48. (b) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que,
L., Jr. Chem. ReV. 2004, 104, 939.
(2) (a) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.;
Benson, D. E.; Sweet, R. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G.
Science 2000, 287, 1615. (b) MacBeth, C. E.; Golombek, A. P.; Young,
V. G., Jr.; Yang, C.; Kuczera, K.; Hendrich, M. P.; Borovik, A. S. Science
2000, 289, 938.
(3) Rohde, J. U.; In, J.-H.; Lim, M. H.; Brennessel, W. W.; Bukowski, M.
R.; Stubna, A.; Mu¨nck, E.; Nam, W.; Que, L., Jr. Science 2003, 299,
1037.
(4) (a) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida,
M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696. (b) Howard, J.
B.; Rees, D. C. Chem. ReV. 1996, 96, 2965. (c) Burgess, B. K.; Lowe, D.
J. Chem. ReV. 1996, 96, 2983.
(5) (a) Seefeldt, L. C.; Dance, I. G.; Dean, D. R. Biochemistry 2004, 43,
1401. (b) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. ReV. 1978, 78,
589. (c) Hughes, D. L.; Ibrahim, S. K.; Pickett, C. J.; Querne, G.;
Laouenan, A.; Talarmin, J.; Queiros, A.; Fonseca, A. Polyhedron 1994,
13, 3341. (d) Leigh, G. J. Science 2003, 301, 55.
(6) Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76.
(7) (a) Hills, A.; Hughes, D. L.; Jiminez-Tenorio, M.; Leigh, G. J.; Rowley,
A. T. J. Chem. Soc., Dalton Trans. 1993, 3041. (b) George, T. A.; Rose,
D. J.; Chang, Y. D.; Chen, Q.; Zubieta, J. Inorg. Chem. 1995, 34, 1295.
(c) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 10782.
(8) (a) Wagner, W. D.; Nakamoto, K. J. Am. Chem. Soc. 1988, 110, 4044.
(b) Meyer, K.; Bill, E.; Mienert, B.; Weyhermuller, T.; Wieghardt, K. J.
Am. Chem. Soc. 1999, 121, 4859.
Figure 4. Theoretically predicted geometry and electronic structure (DFT,
JAGUAR 5.0, B3LYP/LACVP**) for S ) 0 [PhBPiPr3]FetN. Lobal
representations correspond to the frontier orbitals (energies in eV). Structural
parameters: Fe-P ) 2.28, 2.28, 2.29 Å; N-P-Fe ) 117, 117, 119°;
P-Fe-P ) 99, 101, 101°; Fe-N ) 1.490 Å.
addition to the distinct N-atom hybridization in the nitride complex
by comparison to related imide structures,21 dramatically destabilizes
2
the iron-centered a1 orbital of dz parentage. This situation gives
rise to a large HOMO-LUMO gap for [PhBPiPr3]FetN and a
favorable ground-state (xy)2(x2 - y2)2(z2)0(xz)0(yz)0 electronic con-
figuration consistent with a d4, S ) 0 FeIVtN subunit. The
diamagnetic d4 complex (mesityl)3IrVtO presumably owes its
stability to similar electronic arguments.22
While we have yet to thoroughly survey the reactivity of
[PhBPiPr3]FetN, we note the following preliminary observations.
The addition of PPh3 or PEt3 to THF solutions of [PhBPiPr3]FetN
appears to cleanly (1H NMR) generate the corresponding S ) 2
Fe(II) phosphiniminatos [PhBPiPr3]Fe-NdPR3 (R ) PPh3 or PEt3).
The presence of the phosphiniminato functionality is in each case
confirmed by the presence of intense IR vibrations (KBr/C6H6, ν-
(Ph3PdN) ) 1223 cm-1, ν(Et3PdN) ) 1214 cm-1). Also, the
corresponding R3PdNH2+ protonolysis products are liberated and
detected by subjecting the reaction solutions to positive mode ES-
(9) Betley, T. A.; Peters, J. C. Inorg. Chem. 2003, 42, 5074.
(10) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125,
322.
(11) (a) Carpino, L. A.; Padykula, R. E.; Barr, D. E.; Hall, F. H.; Krause, J.
G.; Dufresne, R. F.; Thoman, C. J. J. Org. Chem. 1988, 53, 2565. (b)
Mindiola, D. J.; Cummins, C. C. Angew. Chem., Int. Ed. 1998, 37, 945.
(12) The first-order decay of [PhBPiPr3]Fe(dbabh) was established by monitoring
the decay of its optical absorption at 475 nm (k ) 0.067 M-1 s-1, 22 °C,
1.2 mM solution; See Supporting Information for details).
(13) (a) Laplaza, C. E.; Cummins, C. C. Science 1995, 268, 861. (b) Yandulov,
+
+
MS (electrospray: Ph3PNH2 ) m/z 278, Et3PNH2 ) m/z 120).
Perhaps most interesting to note is that the nitride ligand serves as
a source of NH3 upon the addition of proton and electron
equivalents. For example, the addition of solid [LutH][BPh4] and
CoCp2 (3 equiv of each) to a room-temperature C6D6 solution of
[PhBPiPr3]FetN produced after 2 h an appreciable quantity of NH3,
D. V.; Schrock, R. R. J. Am. Chem. Soc. 2002, 124, 6252.
2
(14) JPN coupling is not observed in either the 15N NMR spectrum or the 31
P
NMR spectrum for [PhBPiPr3]Fet15N. A number of phosphine-supported
imides and nitrides that feature other metals (e.g., Mo, W) have been
prepared for which 15N and 31P NMR data is available. JPN coupling is
2
not observed in these systems. See: (a) Rocklage, S. M.; Schrock, R. R.
J. Am. Chem. Soc. 1982, 104, 3077. (b) Donovan-Mtunzi, S.; Richards,
R. L.; Mason, J. J. Chem. Soc., Dalton Trans. 1984, 1329.
(15) (a) Buhr, J. D.; Taube, H. Inorg. Chem. 1979, 18, 2208. (b) Man, W.-L.;
Tang, T.-M.; Wong, T.-W.; Lau, T.-C.; Peng, S.-M.; Wong, W.-T. J. Am.
Chem. Soc. 2004, 126, 478. (c) Seymore, S. B.; Brown, S. N. Inorg. Chem.
2002, 41, 462.
(16) (a) (trans-[1,2-Cyclohexanediamino-N,N′-bis(4-diethylaminosalicylidene])-
MnVtN was synthesized from trans-[1,2-cyclohexanediamino-N,N′-bis-
(4-diethylaminosalicylidene] according to: Du Bois, J.; Hong, J.; Carreira,
E. M.; Day, M. W. J. Am. Chem. Soc. 1996, 118, 915. (b) Bendix, J. J.
Am. Chem. Soc. 2003, 125, 13348. (c) Chang, C. J.; Low, D. W.; Gray,
H. B. Inorg. Chem. 1997, 36, 270.
(17) For instance, we suspect the reaction solution also contains a bridged nitride
species (i.e., FedNdMn). Studies are underway to resolve the complete
product profile.
(18) [TPP] ) tetraphenylporphyrinato; [HIPTN3N] ) tris(2-(2,4,6,2′′,4′′,6′′-
hexaisopropyl-1,1′:3′,1′′-terphenyl-5′-amino)ethyl)amine.
(19) Hill, C. L.; Hollander, F. J. J. Am. Chem. Soc. 1982, 104, 7318.
(20) See Supporting Information for details. Jaguar, version 5.0, Schrod-
inger: Portland, OR, 2002.
1
easily identified by H NMR in d6-DMSO as its NH4Cl salt after
vacuum transfer of the reaction volatiles into an ethereal solution
of HCl (ca. 1 M).13b Two independent runs using these nonopti-
mized conditions afforded 41 and 45% of NH3 based upon NMR
integration versus an internal standard. In a potentially related
reaction, the release of p-toluidine by hydrogenation of the iron-
(III) imide [PhB(CH2PPh2)3]FetN-p-tolyl was observed.23
To conclude, the “[PhBPiPr3]Fe-Nx” chemistry discussed herein
and that which we have reported previously7c collectively illustrate
that the redox chemistry available to a pseudotetrahedral iron site
can be remarkably rich. Examples of “[PhBPiPr3]Fe-Nx” complexes
have now been characterized that feature five formal iron oxidation
-
states based upon the magnetic data available:24 [PhBPiPr3]Fe0N2
(S ) 1), [PhBPiPr3]FeI-N2-FeI[PhBPiPr3] (S ) 3/2 per iron center),
[PhBPiPr3]FeII-N2Me (S ) 2), [PhBPiPr3]FeIIItNAd (S ) 1/2), and
[PhBPiPr3]FeIVtN (S ) 0). For each of these complexes, the
dominant structural modification pertains to the nature of the fourth
Nx ligand: π-acidic N2 favors the lower oxidation states, whereas
π-basic nitride (or imide) favors the higher oxidation states.
(21) Jenkins, D. M.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2002, 124,
11238.
(22) Hay-Motherwell, R. S.; Wilkinson, G.; Hussain-Bates, B.; Hursthouse,
M. B. Polyhedron 1993, 12, 2009.
(23) Brown, S. D.; Peters, J. C. J. Am. Chem. Soc. 2004, 126, 4538.
(24) While their ground spin-state assignments (EPR, SQUID) are consistent
with these formal oxidation states, studies are underway to further probe
this family of [PhBPiPr3]Fe-Nx species by Mo¨ssbauer spectroscopy.
Acknowledgment. This work was supported by the NSF (CHE-
01232216), the Sloan Foundation, and the Dreyfus foundation.
JA048713V
9
6254 J. AM. CHEM. SOC. VOL. 126, NO. 20, 2004