ACS Catalysis
Page 4 of 5
1
2
3
4
the pressure was carefully released. After removal of solvent under
reduced pressure, pure product was obtained by column chromatog-
raphy on silica gel (eluent: pentane/ethyl acetate = 10:1).
5
6
REFERENCES
[1]
(a) Novel Synthetic Chemistry of Ureas and Amides (Hutchby,
7
8
9
M.), Springer, 2013. (b) Mintzer, M. A.; Simanek, E. E. Chem. Rev. 2009,
109, 259-302.
[2]
(a) Carey, J. S.; Laffan, D.; Thomson, C.; M. Williams, T. Org.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Biomol. Chem. 2006, 4, 2337-2347. (b) Cupido, T.; Tulla-Puche, J.; Speng-
ler, J.; Albericio, F. Curr. Opin. Drug Discovery Dev. 2007, 10, 768-783.
[3]
(a) Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem. Int.
Ed. 2009, 48, 4114-4133. (b) Fujiwara, Y.; Takaki, K.; Taniguchi, Y. Synlett
1996, 7, 591-599.
[4]
For selected reports on aminocarbonylation for benzamides
synthesis, see: (a) Schoenberg, A.; Heck, R. F. J. Org. Chem. 1974, 39,
3327-3331. (b) Hosoi, K.; Nozaki, K.; Hiyama, T. Org. Lett. 2002, 4, 2849-
2851. (c) Cunico, R. F.; Maity, B. C. Org. Lett. 2002, 4, 4357-4359. (d)
Yamazaki, K.; Kondo, Y. J. Comb. Chem. 2004, 6, 121-125. (e) Schnyder,
A.; Indolese, A. F. J. Org. Chem. 2002, 67, 594-597. (f) Morera, E.; Ortar,
G. Tetrahedron Lett. 1998, 39, 2835-2838. (g) Ueda, K.; Sato, Y.; Mori, M.
J. Am. Chem. Soc. 2000, 122, 10722-10723. (h) Liang, Z.; Zhang, J.; Liu, Z.;
Wang, K.; Zhang, Y. Tetrahedron 2013, 69, 6519-6526. (i) Orito, K.;
Horibata, A.; Nakamura, T.; Ushito, H.; Nagasaki, H.; Yuguchi, M.;
Yamashita, S.; Tokuda, M. J. Am. Chem. Soc. 2004, 126, 14342-14343. (j)
Haffemayer, B.; Gulias, M.; Gaunt, M. J. Chem. Sci. 2011, 2, 312-315.
Scheme 3. Proposed reaction mechanism.
In conclusion, a novel copper-catalyzed aminocarbonylation re-
action of alkanes with amines has been developed. With copper salt
as the catalyst, various aliphatic amides were prepared in good
yields by carbonylative activation of the C(sp3)-H bond of alkanes.
Notably, this is the first report on copper-catalyzed aminocarbonyl-
ation reaction for aliphatic amides synthesis.
[5]
For leading reviews on radical carbonylation, see: (a) Schiesser,
C. H.; Wille, U.; Matsubara, H.; Ryu, I. Acc. Chem. Res. 2007, 40, 303-313.
(b) Sumino, S.; Fusano, A.; Fukuyama, T.; Ryu, I. Acc. Chem. Res. 2014, 47,
1563-1574. (c) Ryu, I.; Sonoda, N. Angew. Chem. Int. Ed. 1996, 35, 1050-
1066. (d) Ryu, I. Chem. Rec. 2002, 2, 249-258. for reports on carbonylation
of cycloalkanes with alkenes, see: (e) Ryu, I.; Tani, A.; Fukuyama, T.;
Ravelli, D.; Fagnoni, M.; Albini, A. Angew. Chem. Int. Ed. 2011, 50, 1869-
1872. (f) Okada, M.; Fukuyama, T.; Yamada, K.; Ryu, I.; Ravelli, D.;
Fagnoni, M. Chem. Sci. 2014, 5, 2893-2898.
ASSOCIATED CONTENT
Supporting Information: General procedure, NMR data and spectrum
AUTHOR INFORMATION
Corresponding Author
E-mail: Xiao-Feng.Wu@catalysis.de
[6]
(a) Yoo, E. J.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132,
17378-17380. (b) Li, S.; Chen, G.; Feng, C.-G.; Gong, W.; Yu, J.-Q. J. Am.
Chem. Soc. 2014, 136, 5267-5270. (c) McNally, A.; Haffemayer, B.;
Collins, B. S. L.; Gaunt, M. J. Nature 2014, 510, 129-133. (d) Hasegawa,
N.; Charra, V.; Inoue, S.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc.
2011, 133, 8070-8073. (e) Wang, C.; Zhang, L.; Chen, C.; Han, J.; Yao, Y.;
Zhao, Y. Chem. Sci. 2015, 6, 4610-4614. For reports on carbonylation of
C(sp3)-H bond of benzylic substrates, see: (f) Xie, P.; Xie, Y.; Qian, B.; Zhou,
H.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 9902-9905. (g) Xie, P.;
Xia, C.; Huang, H. Org. Lett. 2013, 15, 3370-3373. (h) Liu, H.; Laurenczy,
G.; Yan, N.; Dyson, P. J. Chem. Commun. 2014, 50, 341-343. For a general
review on C(sp3)-X bond carbonylations, see: (i) Wu, L.; Fang, X.; Liu, Q.;
Jackstell, R.; Beller, M.; Wu, X.-F. ACS Catal. 2014, 4, 2977-2989.
ACKNOWLEDGMENT
The authors thank the Chinese Scholarship Council for financial Sup-
port. We also thank the financial supports from NSFC (21472174) and
Zhejiang Natural Science Fund for Distinguished Young Scholars
(LR16B020002). The analytic supports of Dr. W. Baumann, Dr. C.
Fisher, S. Buchholz, and S. Schareina are gratefully acknowledged. We
also appreciate the generous supports from Professor Matthias Beller in
LIKAT.
General procedure:
[7]
Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M.
A 4 mL screw-cap vial was charged with CuF2 (5.05 mg, 10 mol%),
1,10-phenanthroline hydrate (9.9 mg, 10 mol%), aniline (0.5 mmol),
cyclohexane (1.5 mL) and an oven-dried stirring bar. The vial was
closed by Teflon septum and phenolic cap and connected with atmos-
phere with a needle. After cyclohexane (1.5 mL), DTBP (0.75 mmol)
were injected by syringe, the vial was fixed in an alloy plate and put into
Paar 4560 series autoclave (500 mL) under argon atmosphere. At
room temperature, the autoclave is flushed with carbon monoxide for
three times and 20 bar of carbon monoxide was charged. The autoclave
was placed on a heating plate equipped with magnetic stirring and an
C. Chem. Rev. 2013, 113, 6234-6458.
[8]
1766.
[9]
McCann, S. D.; Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756–
(a) Liu, J. M.; Zhang, R. Z.; Wang, S. F.; Sun, W.; Xia, C. G. Org.
Lett. 2009, 11, 1321-1324. (b) Tambade, P.; Patil, Y.; Nandurkar, N.;
Bhanage, B. Synlett, 2008, 886-888. (c) Kang, S.-K.; Yamaguchi, T.; Kim,
T.-H.; Ho, P.-S. J. Org. Chem. 1996, 61, 9082-9083. (d) Romano, U.; Tesel,
R.; Rebora, P.; Mauri, M. Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, 396-403.
[10] Li, Y.; Dong, K.; Zhu, F.; Wang, Z.; Wu, X.-F. Angew. Chem. Int.
Ed. 2016, 55, 7227-7230.
o
aluminum block. The reaction is allowed to be heated under 120 C for
24 hours. Afterwards, the autoclave is cooled to room temperature and
ACS Paragon Plus Environment