3892
T. M. V. D. Pinho e Melo et al. / Tetrahedron Letters 45 (2004) 3889–3893
CO2Me
CO2Me
O
MeO2C
Ph
CO2Me
Me
CO2Me
Me
700 C
700 C
˚
˚
O2S
N
-2
-2
N
H
4x10 mbar
4x10 mbar
Me
N
Ph
6b
H
18, 22% (from 8b)
18, 31% (from 9b)
9b
O
H
O
O
CO2Me
Me
CO2Me
Me
CO2Me
[1,5]H
Me
FVP
- MeOH
9b
N
N
N
H
19
20
21
[1,5]H
18
Scheme 4.
The most likely mechanism for the formation of 18 is
shown in Scheme 4. It has been reported that methyl
pyrrole-2-carboxylate undergoes elimination of metha-
nol to produce pyrrol-2-ylketene under FVP condi-
tions.8 In a similar manner styryl-1H-pyrrole 9b
generates pyrrol-3-ylketene 19 on eliminating methanol.
Electrocyclisation of 19 followed by two sigmatropic H-
shifts gives compound 18.
References and notes
1. (a) Sutcliffe, O. B.; Storr, R. C.; Gilchrist, T. L.; Rafferty,
P.; Crew, A. P. A. Chem. Commun. 2000, 675–676; (b)
Sutcliffe, O. B.; Storr, R. C.; Gilchrist, T. L.; Rafferty, P.
J. Chem. Soc., Perkin Trans. 1 2001, 1795–1806.
2. (a) Pinho e Melo, T. M. V. D.; Barbosa, D. M.; Ramos,
P. J. R. S.; Rocha Gonsalves, A. M. d’A.; Gilchrist, T. L.;
~
Beja, A. M.; Paixao, J. A.; Silva, M. R.; Alte da Veiga, L.
J. Chem. Soc., Perkin Trans. 1 1999, 1219–1223; (b) Pinho
Compound 6a and 9a showed similar chemical behav-
iour when compared with 6b and 9b, respectively,
and the corresponding 4-oxo-1,4-dihydro-1-aza-
benzo[f]azulene-3-carboxylate could be obtained on
FVP although in low yield.
e Melo, T. M. V. D.; Soares, M. I. L.; Barbosa, D. M.;
~
Rocha Gonsalves, A. M. d’A.; Paixao, J. A.; Beja, A. M.;
Silva, M. R.; Alte da Veiga, L. Tetrahedron 2000, 56,
3419–3424; (c) Pinho e Melo, T. M. V. D.; Soares, M. I.
~
L.; Rocha Gonsalves, A. M. d’A.; Paixao, J. A.; Beja,
A. M.; Silva, M. R.; Alte da Veiga, L.; Costa Pessoa, J.
J. Org. Chem. 2002, 67, 4045–4054; (d) Pinho e Melo, T.
M. V. D.; Gomes, C. S. B.; Rocha Gonsalves, A. M. d’A.;
~
Paixao, J. A.; Beja, A. M.; Ramos Silva, M.; Alte da
Veiga, L. Tetrahedron 2002, 58, 5093–5102.
In conclusion, we have shown that 1-azafulvenium
methides, generated by the thermal extrusion of sulfur
dioxide from pyrrolo[1,2-c]thiazole-2,2-dioxides, are
valuable intermediates for the synthesis of heterocylic
compounds. Sealed tube reaction conditions allow the
synthesis of N-(11) and C-vinylpyrroles (9) whereas FVP
conditions lead to heterocycles where another ring
system is annulated to pyrrole namely 1,3-dimethyl-5-
oxo-5H-pyrrolizine-2-carboxylate (12) and 2-methyl-4-
oxo-1,4-dihydro-1-aza-benzo[f ]azulene-3-carboxylate
(13). The efficient synthesis of 1,3-dimethyl-5-oxo-5H-
pyrrolizine-2-carboxylate (12) was also achieved via
FVP of N-vinylpyrrole 11 and the styryl-1H-pyrroles 9
FVP gave 4-oxo-1,4-dihydro-1-aza-benzo[f]azulene-3-
carboxylates.
3. Dimethyl 2-methyl-5-styryl-1H-pyrrole-3,4-dicarboxylate
9b. 3-Methyl-5-phenyl-1H-pyrrolo[1,2-c]thiazole-2,2-diox-
ide 6b (0.34 g, 0.93 mmol) was dissolved in sulfolane
(2 mL) in a glass pyrolysis tube, which was cooled in liquid
nitrogen, evacuated, sealed and heated at 220 ꢁC for 1.5 h.
After cooling to room temperature the tube was opened,
the reaction mixture diluted with dichloromethane and
washed with water. Purification by flash chromatography
[SiO2, ethyl-acetate–hexane (1:2) then ethyl-acetate–hex-
ane (1:1)] gave 9b as a solid (54%). Mp 151.9–153.6.0 ꢁC
(from ethyl ether). dH (CDCl3, 300 MHz) 2.40 (3H, s, Me),
3.80 (3H, s, CO2Me), 3.85 (3H, s, CO2Me), 6.77 (1H, d,
J ¼ 16:8 Hz), 7.32 (1H, d, J ¼ 16:8 Hz), 7.19–7.38 (5H, m,
Ar–H); dC (CDCl3, 75.5 MHz) 12.6, 51.5, 51.8, 113.0,
114.2, 116.3, 126.4, 127.8, 127.9, 128.6, 132.3, 135.7, 136.5,
165.7, 165.9; m=z (EI) 299 (Mþ, 100%), 267 (53), 236 (39),
209 (25), 180 (51). Anal. Calcd for C17H17NO3: C, 68.22;
H, 5.72; N, 4.68. Found: C, 68.60; H, 6.07; N, 4.79%.
4. Methyl 1,3-dimethyl-5-oxo-5H-pyrrolizine-2-carboxylate
12. Pyrolysis of 3,5-dimethyl-1H-pyrrolo[1,2-c]thiazole-
2,2-dioxide 10 (0.20 g, 0.67 mmol) at 700 ꢁC/8 · 10ꢀ2 mbar
onto a surface cooled at ꢀ196 ꢁC over a period of 2 h
20 min gave a yellowish pyrolysate. (The rate of volatil-
isation of the starting material was controlled by the use of
a Kugelrohr oven, which heated the sample at 200 ꢁC.)
After cooling to room temperature the pyrolysate was
Acknowledgements
~
We thank Prof. A. Mourino and Dr. M. M. Pastor
(University of Santiago de Compostela) and Dr. Rui M.
Brito and J. Rui Rodrigues (University of Coimbra) for
the NMR studies. We also thank Chymiotechnon and
Fundaßc~ao para a Ci^encia e a Tecnologia (POCTI/36137/
QUI/2000 and SFRH/BD/9123/2002) for financial sup-
port.