Page 5 of 6
ACS Catalysis
A. S.; Chernyak, N.; Gevorgyan, V. Transition Metal-Mediated
Synthesis of Monocyclic Aromatic Heterocycles. Chem. Rev. 2013,
113, 3084-3213.
[5] Ahmed, M. S. M.; Kobayashi, K.; Mori, A. One-Pot Construction
of Pyrazoles and Isoxazoles with Palladium-Catalyzed Four-
Component Coupling. Org. Lett. 2005, 7, 4487-4489.
Dorsselaer, A.V.; Albrecht-Gary, A.M.; Nierengarten, J.F. Supramo-
lecular click chemistry with a bisammonium-C60 substrate and a di-
topic crown ether host. Angew. Chem. Int. Ed. 2005, 44, 5338–5341.
(g) Iha, R. K.; Wooley, K. L.; Nys-tröm, A. M.; Burke, D. J.; Kade, M.
J.; Hawker, C. J. Applications of Orthogonal “Click” Chemistries in the
Synthesis of Functional Soft Materials. Chem. Rev. 2009, 109, 5620-
5686.[16] (a) Chen, Y.; Li, L.; Ma, Y.; Li, Z. Cobalt-Catalyzed Three-
Component Difluoroalkylation–Peroxidation of Alkenes. J. Org. Chem.
2019, 84, 5328-5338. b) Shi, E.; Liu, J.; Liu, C.; Shao, Y.; Wang, H.;
Lv, Y.; Ji, M.; Bao, X.; Wan, X. Difunctionalization of Styrenes with
Perfluoroalkyl and tert-Butylperoxy Radicals: Room Temperature
Synthesis of (1-(tert-Butylperoxy)-2-perfluoroalkyl)-ethylbenzene. J.
Org. Chem. 2016, 81, 5878-5885.
[17] (a) Li, D.; Mao, T.; Huang, J.; Zhu, Q. Copper-Catalyzed Bromod-
ifluoroacetylation of Alkenes with Ethyl Bromodifluoroacetate. J. Org.
Chem. 2018, 83, 10445-10452. (b) Zeng, R.; Fu, C.; Ma, S. Formal Al-
kylation of Allenes through Highly Selective Radical Cyclizations of
Allene-enes. Angew. Chem. Int. Ed. 2012, 51, 3888-3891. (c) Nguyen,
J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. Inter-
molecular Atom Transfer Radical Addition to Olefins Mediated by Ox-
idative Quenching of Photoredox Catalysts. J. Am. Chem. Soc. 2011,
133, 4160-4163. (d) Brace, N. O.; Long Chain Alkanoic and Alkenoic
Acids with Perfluoroalkyl Terminal Segments. J. Org. Chem. 1962, 27,
4491-4498.
[18] N-O bond formation: (a) Kumar, G. R.; Kumar, Y. K.; Reddy, M.
S. A Direct Access to Isoxazoles from Ynones Using Trimethylsilyl
Azide as Amino Surrogate under Metal/Catalyst Free Conditions.
Chem. Commun. 2016, 52, 6589-6592. (b) Stokes, B. J.; Vogel, C. V.;
Urnezis, L. K.; Pan, M.; Driver, T. G. Intramolecular Fe(II)-Catalyzed
N−O or N−N Bond Formation from Aryl Azides, Org. Lett. 2010, 12,
2884-2887.
[19] Substitution of b-fluoro a,b-unsaturated ketones: (a) Liu, C.; Shi,
E.; Xu, F.; Luo, Q.; Wang, H.; Chen, J.; Wan, X. Combination of
Fluoroalkylation and Kornblum–DeLaMare Reaction: a New Strategy
for the Construction of (Z)-β-Perfluoroalkyl Enaminones. Chem. Com-
mun. 2015, 51, 1214-1217. (b) Luo, Q.; Liu, C.; Tong, J.; Shao, Y.;
Shan, W.; Wang, H.; Zheng, H.; Cheng, J.; Wan, X. Cu-Catalyzed Mul-
ticomponent Reaction of Styrenes, Perfluoroalkyl Halide, Alcohol, and
tert-Butyl Hydroperoxide: One-Pot Synthesis of (Z)-β-Alkoxyper-
fluoroalkenone. J. Org. Chem. 2016, 81, 3103-3111. (c) Fu, Q.; Wang,
R.; Liang, F.; Guan, W.; Aza-Tricycles Containing a Perfluoroalkyl
Group: Synthesis, Structure and Fluorescence. Org. Biomol. Chem.
2018, 16, 8950-8954.
[20] (a) Chu, X.-Q.; Cheng, B.-Q.; Zhang, Y.-W.; Ge, D.; Shen, Z.-L.;
Loh, T.-P. Copper-Catalyzed Three-Component Cyclization of Ami-
dines, Styrenes, and Fluoroalkyl Halides for the Synthesis of Modular
Fluoroalkylated Pyrimidines. Chem. Commun. 2018, 54, 2615-2618. (b)
Chu, X.-Q.; Xie, T.; Li, L.; Ge, D.H.; Shen, Z.-L.; Loh, T.-P. Combin-
ing Fluoroalkylation and Defluorination to Enable Formal [3 + 2 + 1]
Heteroannulation by Using Visible-Light Photoredox Organocatalysis.
Org. Lett. 2018, 20, 2749-2752. (c) Xie, T.; Zhang, Y.-W.; Liu, L.-L.;
Shen, Z.-L.; Loh, T.-P.; Chu, X.-Q. Polycyclic Heteroaromatic Ring
Construction Driven by Silver/Cobalt Co-Catalyzed Desulfonylative
and Defluorinative Fragment-Recombination of Enol Nonaflates with
Amidines. Chem. Commun. 2018, 54, 12722-12725. (d) Li, Y.; Liu, J.;
Zhao, S.; Du, X.; Guo, M.; Zhao, W.; Tang, X.; Wang, G. Copper-Cat-
alyzed Fluoroolefination of Silyl Enol Ethers and Ketones toward the
Synthesis of β-Fluoroenones. Org. Lett. 2018, 20, 917-920. (e) Wang,
R.; Guan, W.; Han, Z.-B.; Liang, F.; Suga, T.; Bi, X.; Nishide, H. Am-
bient-Light-Promoted Three-Component Annulation: Synthesis of Per-
fluoroalkylated Pyrimidines. Org. Lett. 2017, 19, 2358-2361.
[21] Kornblum, N.; DeLaMare, H. E. The Base Catalyzed Decomposi-
tion of a Dialkyl Peroxide. J. Am. Chem. Soc. 1951, 73, 880-881.
[22] a) ref. 17a; b) Liu, Z.; Liu, J.; Zhang, L.; Liao, P.; Song, J.; Bi, X.
Silver(I)-Catalyzed Hydroazidation of Ethynyl Carbinols: Synthesis of
2-Azidoallyl Alcohols. Angew. Chem. Int. Ed. 2014, 53, 5305-5309.
[23] L’abbe, G.; Hassner, A. New Methods for the Synthesis of Vinyl
Azides. Angew. Chem. Int. Ed. 1971, 10, 98-104.
1
2
3
4
5
6
7
8
[6]
A review on multicomponent reactions for syntheses of
heterocycles: Eckert, H. Diversity Oriented Syntheses of Conventional
Heterocycles by Smart Multi Component Reactions (MCRs) of the Last
Decade. Molecules 2012, 17, 1074-1102.
[7] (a) Kumar, V.; Kaur, K.; Fluorinated Isoxazolines and Isoxazoles:
A Synthetic Perspective. J. Fluorin Chem. 2015, 180, 55-97. (b) Zhang,
X.-W.; Hu, W.-L.; Chen, S.; Hu. X.-G. Cu-Catalyzed Synthesis of
Fluoroalkylated Isoxazoles from Commercially Available Amines and
Alkynes. Org. Lett. 2018, 20, 860−863. (c) Guo, Y.; Wang, X.; Zhu, Z.;
Zhang, J.; Wu, Y. One-Pot Synthesis of Trifluoromethylated
Iodoisoxazoles via the Reaction of Trifluoroacetohydroximoyl
Chloride with Terminal Alkynes and N-Iodosuccinimide. Synlett 2016,
27, 2259-2263. (d) Gonçalves, R. S. B.; Santos, M. D.; Bernadat,
Bonnet-Delpon, G. D.; Crousse, B. A One-Pot Synthesis of 3-
Trifluoromethyl-2-Isoxazolines from Trifluoromethyl Aldoxime.
Beilstein. J. Org. Chem. 2013, 9, 2387-2394.
[8] The introduction of fluorine or fluorinated group on the isoxazole
ring was achieved: (a) Li, X.-T.; Lv, L.; Gu, Q.-S.; Liu, X.-Y. Copper-
Catalyzed Radical Oxytrifluoromethylation of Alkenyl Oximes at
Ambient Temperature. Tetrahedron 2018, 74, 6041-6046. (b) Zhang,
W.; Su, Y.; Wang, K.-H.; Wu, L.; Chang, B.; Shi, Y.; Huang, D.; Hu,
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Y.
Trichloroisocyanuric
Acid
Promoted
Cascade
Cyclization/Trifluoromethylation of Allylic Oximes: Synthesis of
Trifluoromethylated Isoxazolines. Org. Lett. 2017, 19, 376-379. (c) C.
E. Stephens, J. A. Blake, Nuclear Fluorination of 3,5-Diarylisoxazoles
with Selectfluor. J. Fluorine Chem. 2004, 125, 1939-1945. (d) Yoshida,
M.; Ohkoshi, M.; Muraoka, T.; Matsuyama, H.; Iyoda M. Oxygenative
Perfluoroalkylation of Olefinic Compounds Using Perfluoroalkyl Io-
dide in the Presence of Oxygen. Bull. Chem. Soc. Jpn., 2002, 75, 1833–
1842. (e) Ohkoshi, M.; Yoshida, M.; Matsuyama, H.; Iyoda, M. Novel
synthesis of perfluoroalkylated heterocyclic compounds from a-
chlorostyrenes via perfluoroalkylated -unsaturated ketones.
Tetrahedron. Lett. 2001, 42, 33-36.
[9] (a) Pace, A.; Buscemi, S.; Vivona, N. The Synthesis Of Fluorinated
Heteroaromatic Compounds. Part 2. Five-Membered Rings With Two
Heteroatoms. A Review. Org. Prep. Proced. Int. 2007, 39, 1-70. (b)
Massyn, C.; Cambon, A. Mise en Evidence D'hydroxy 5, Δ2-
Isoxazolines Interm Ediaires Dans la Synthèse D'isoxazoles
Perfluoroalkylés. J. Fluorine Chem. 1975, 5, 67-70.
[10] Joshi, K. C.; Pathak, V. N.; Grover, V. Studies in Potential organo-
Fluorine Antibacterial Agents. Part 2: Synthesis and Antibacterial Ac-
tivity Of Some New Fluorine-Containing 3.5-Disubstituted Isoxazoles.
Pharmazie 1979, 34, 68-69.
[11] The preliminary synthetic application was given in SI.
[12] Crystallographic data of compound 5na was deposited at Cam-
bridge Crystallographic Data Center: CCDC 1920260.
[13] Qi, B.; Zhang, T.; Li, M.; He, C. Highly Shape- and Regio-selec-
tive Peroxy–Trifluoromethylation of Styrene by Metal–Organic
Framework Cu3(BTC)2. Catal. Sci. Technol. 2017, 7, 5872-5881.
[14] Lemport, P. S.; Smolyar, I. V.; Khrustalev, V. N.; Roznyatovsky,
V. A.; Popov, A. V.; Kobelevskaya, V. A.; Rozentsveig, I. B.; Nenaj-
denko, V. G. 3,3-Diazidoenones – New Types of Highly Reactive Bis-
Azides. Preparation and Synthetic Transformations. Org. Chem. Front.
2019, 6, 335-341.
[15] (a) Gramlich, P. M. E.; Wirges, C. T.; Manetto, A.; Carell, T.
Postsynthetic DNA Modification through the Copper-Catalyzed Azide-
Alkyne Cycloaddition Reaction. Angew. Chem. Int. Ed. 2008, 47,
8350-8358. (b) Lahann, J. Click Chemistry for Bio-technology and
Materials Science, Wiley, Chichester, 2009. (c) Huryn, D. M.; Okabe,
M. AIDS-driven nucleoside chemistry.Chem. Rev. 1992, 92, 1745-
1768. (d) Kolb, H. C.; Sharpless, K. B. The growing impact of click
chemistry on drug discovery. Drug Discovery Today 2003, 8, 1128-
1137. (e) Sletten, E. M.; Bertozzi, C. R. From Mechanism to Mouse: A
Tale of Two Bioorthogonal Reactions. Acc. Chem. Res. 2011, 44, 666-
676. (f) Hahn, U.; Elhabiri, M.; Trabolsi, A.; Herschbach, H.; Leize, E.;
ACS Paragon Plus Environment