3886 J ournal of Medicinal Chemistry, 1999, Vol. 42, No. 19
Klein et al.
N,N-Dim et h yl-3-(4-m et h oxyp h en yl)p r op yla m in e h y-
d r och lor id e (12):44 IR (KBr) 2950, 2840, 2530, 1460, 1170,
1120, 820 cm-1; 1H NMR (CDCl3) δ 2.14-2.22 (2H, m), 2.69 (2
H, t, J ) 7.25 Hz), 2.77 (6 H, d, J ) 4.92 Hz), 2.92-2.97 (2 H,
m), 3.79 (3H, s), 6.85 (2 H, d, J ) 8.64 Hz), 7.10 (2 H, d, J )
8.61 Hz).
2.82 (6 H, d, J ) 3.35 Hz), 2.90 (2 H, t, J ) 7.48 Hz), 2.98-
3.05 (2 H, m), 7.41 (2 H, d, J ) 9.45 Hz), 8.81 (2 H, d, J ) 8.53
Hz).
3-P h en yl-N,N,N-t r im et h ylp r op yla m m on iu m Iod id e
(22).48 A mixture of 6 (6.75 g, 50 mmol), methyl iodide (43.2
g, 0.3 mol), and potassium carbonate (12 g) in water (80 mL)
was refluxed for 7 h. Excess of methyl iodide was evaporated
and the residue extracted three times with 50 mL of dichlo-
romethane. The combined organic layer was dried and evapo-
rated. The residue was recrystallized from ethanol/ether to give
22 (13.4 g, 88%) as colorless crystals: mp 175 °C (173 °C);28
IR (KBr) 3000, 1470, 720 cm-1; 1H NMR (CD3OD) δ 2.09-2.17
(2 H, m), 2.72 (2 H, t, J ) 7.57 Hz), 3.13 (9 H, s), 3.35-3.40 (2
H, m), 7.19-7.32 (5 H, m).
3-(4-Ch lor obip h en ylyl)-N,N-d im eth ylp r op yla m in e h y-
1
d r och lor id e (13): IR (KBr) 2950, 2470, 1110, 820 cm-1; H
NMR (CDCl3) δ 2.22 (2H, m), 2.79 (8 H, m), 2.97-3.03 (2H,
m), 7.26-7.53 (8 H, m).
N ,N -Dim e t h yl-3-(4’-m e t h o xy -4-b ip h e n yly l)p r op yl-
a m in e h yd r och lor id e (14): IR (KBr) 2940, 2830, 2460, 1490,
1
1240, 1020, 810 cm-1; H NMR (CDCl3) δ 2.23-2.29 (2H, m),
2.76-2.79 (8 H, m), 2.96-3.00 (3 H, m), 3.85 (3H, s), 6.98 (2
H, d, J ) 8.76 Hz), 7.23 (2 H, d, J ) 8.07 Hz), 7.49 (2 H, d, J
) 5.63 Hz), 7.52 (2 H, d, J ) 6.46 Hz).
N ,N -D im e t h y l-3-(4′-h y d r o x y -4-b ip h e n y ly l)p r o p y l-
a m in e Hyd r och lor id e (23). A mixture of the methyl ether
14 (4 g, 13 mmol) in concentrated hydrobromic acid (40 mL)
was refluxed for 2 h. After cooling, to the mixture was added
slowly water (100 mL), and the resulting mixture was alkalized
with concentrated ammonia to give pH 9. The resulting
solution was extracted three times with 75 mL of ether. The
combined organic layer was washed twice with water and
dried, and 120 mL of the solvent was evaporated. After
addition of ethereal hydrochloric acid the crude product was
recrystallized from ethanol/ether to give 23 as colorless
N ,N -D i m e t h y l-3-(4′-e t h o x y -4-b i p h e n y ly l)p r o p y l-
a m in e h yd r och lor id e (15): IR (KBr) 2960, 2530, 1480, 1250,
1160, 1050, 810 cm-1; 1H NMR (CDCl3) δ 1.44 (3H, t, J ) 6.98
Hz), 2.21-2.29 (2H, m), 2.76-2.78 (8 H, m), 2.96-3.01 (2 H,
m), 4.08 (2H, q, J ) 6.98 Hz), 6.97 (2 H, d, J ) 8.75 Hz), 7.23
(2 H, d, J ) 8.10 Hz), 7.50 (2 H, d, J ) 8.0 Hz), 7.51 (2 H, d,
J ) 8.0 Hz).
N,N-Dim eth yl-3-(â-n a p h th yl)p r op yla m in e h yd r och lo-
r id e (16):45 IR (KBr) 2940, 2440, 1470, 820 cm-1 1H NMR
;
crystals: IR (KBr) 3140, 2940, 2680, 1490, 1210, 800 cm-1
;
1H NMR (CD3OD) δ 2.02-2.10 (2H, m), 2.74 (2 H, t, J ) 7.53
Hz), 2.88 (6H, s), 3.12-3.31 (2 H, m), 6.84 (2 H, d, J ) 8.62
Hz), 7.27 (2 H, d, J ) 8.13 Hz), 7.42 (2 H, d, J ) 8.63 Hz), 7.49
(2 H, d, J ) 8.19 Hz).
(CDCl3) δ 2.28-2.35 (2H, m), 2.76 (6 H, d, J ) 4.68 Hz), 2.92
(2 H, t, J ) 7.2 Hz), 2.96-3.01 (2H, m), 7.27-7.81 (7H, m).
3-(3-Ch lor o-4-m et h oxyp h en yl)-N,N-d im et h ylp r op yl-
a m in e h yd r och lor id e (17): IR (KBr) 2950, 2840, 2600, 1500,
1
1060, 1020, 810 cm-1; H NMR (CDCl3) δ 2.14-2.22 (2H, m),
3-(3-Ch lor o-4-h yd r oxyp h en yl)-N,N-d im et h ylp r op yl-
a m in e Hyd r och lor id e (24): obtained following a procedure
similar to that for compound 23; IR (KBr) 3100, 2950, 1470,
2.68 (2 H, t, J ) 7.33 Hz), 2.77 (6 H, d, J ) 4.9 Hz), 2.95-2.98
(2H, m), 3.89 (3H, s), 6.87 (1 H, d, J ) 8.39 Hz), 7.08 (1 H, dd,
J 1 ) 2.12 Hz, J 2 ) 8.2 Hz), 7.18 (1 H, d, J ) 2.13 Hz).
1280, 1160, 1050, 810 cm-1 1H NMR (CD3OD) δ 1.95-2.03
;
(2H, m), 2.61 (2 H, t, J ) 7.57 Hz), 2.86 (6 H, s), 3.08-3.12
(2H, m), 6.85 (1 H, d, J ) 8.25 Hz), 7.01 (1 H, dd, J 1 ) 2.03
Hz, J 2 ) 8.2 Hz), 7.2 (1 H, d, J ) 1.97 Hz).
Meth od C (Sch em e 3): Gen er a l P r oced u r e for th e
P r ep a r a tion of 3,3-Dip h en yl-Su bstitu ted P r op yla m in es
18 a n d 19. 1,1-Diphenyl-substituted ethanol derivatives were
prepared by Grignard reactions according to standard proce-
dures. Vilsmeier formylation and catalytical hydrogenation
were carried out according to method B.
3-(4′-Meth oxy-4-biph en ylyl)-N,N,N-tr im eth ylpr opylam -
m on iu m Ch lor id e (25). Compound 25 was obtained following
a procedure similar to that for compound 22. The resulting
iodide (2.4 g, 6.0 mmol) was dissolved in methanol (40 mL),
and the solution was saturated with gaseous hydrochloric acid
and heated at 100 °C for 1 h in an open round-bottom flask.
The residue was recrystallized from ethanol/ether to give 25
(1.8 g, 94%) as colorless crystals: mp 137 °C; IR (KBr) 2940,
2830, 1490, 1030, 800 cm-1; 1H NMR (CD3OD) δ 2.12-2.20 (2
H, m), 2.75 (2 H, t, J ) 7.45 Hz), 3.13 (9 H, s), 3.36-3.39 (2 H,
m), 3.82 (3H, s), 6.99 (2 H, d, J ) 8.77 Hz), 7.31 (2 H, d, J )
8.05 Hz), 7.51 (2 H, d, J ) 8.40 Hz), 7.52 (2 H, d, J ) 8.00 Hz).
N,N-Dim et h yl-3,3-d ip h en ylp r op yla m in e h yd r och lo-
r id e (18):46 IR (KBr) 3010, 2340, 1460, 700 cm-1 1H NMR
;
(CDCl3) δ 2.61-2.67 (2H, m), 2.76 (6 H, d, J ) 5.15 Hz), 2.89-
2.94 (2 H, m), 4.00 (1 H, t, J ) 2.1 Hz), 7.19-7.33 (10 H, m).
3-(4-Biph en ylyl)-N,N-dim eth ylpr opylam in e h ydr och lo-
r id e (19): IR (KBr) 2910, 2510, 1460, 1150, 750, 680 cm-1; 1H
NMR (CDCl3) δ 2.65-2.71 (2H, m), 2.78 (6 H, d, J ) 4.82 Hz),
2.93-2.97 (2H, m), 4.05 (2 H, t, J ) 7.87 Hz), 7.21-7.56 (14
H, m).
3-N,N-Dim et h yl-3-(4-a m in op h en yl)p r op yla m in e H y-
d r och lor id e (26).42 To a stirred solution of 21 (2.4 g, 10 mmol)
in methanol (100 mL) was added 10% palladium-on-carbon (1.0
g). The reaction mixture was held under a positive pressure
N,N-Dim et h yl-2,3-d ip h en ylp r op yla m in e H yd r och lo-
r id e (20).47 20 was prepared from desoxybenzoin (19.6 g, 0.1
mol) according to method B and the reaction mixture heated
for 24 h at 60-70 °C. For the precipitation of the perchlorate,
2-propanol (400 mL) and perchloric acid (25 mL, 70%) were
added to the mixture. Catalytic hydrogenation of the resulting
iminium salt yielded 20 recrystallized twice from acetone/ether
(8.5 g, 86%) as colorless crystals: mp 167-169 °C; IR (KBr)
2950, 2520, 1460, 690 cm-1; 1H NMR (CDCl3) δ 2.52 (3 H, d, J
) 4.88 Hz), 2.62 (3 H, d, J ) 4.9 Hz), 2.95 (1 H, q, J ) 8.1 Hz),
3.09 (1 H, q, J ) 7.1 Hz), 3.28-3.35 (1H, m), 3.44 (1 H, dt),
3.58-3.65 (1H, m), 7.04-7.33 (10 H, m).
N,N-Dim eth yl-3-(4-n itr op h en yl)p r op yla m in e Hyd r o-
ch lor id e (21).42 To a solution of 6 (17 g, 0.1 mol) in concen-
trated sulfuric acid (40 mL) was added dropwise concentrated
nitric acid (6.6 g) at -10 °C. After stirring for 15 h, the mixture
was added to crushed ice (100 g) and subsequently alkalized
slowly using sodium hydroxide solution (50%). The mixture
was extracted three times with 50 mL of ether. The combined
organic layer was washed with water and dried, and the
hydrochloride was precipitated by addition of ethereal hydro-
chloric acid, recrystallized twice from ethanol/ether to give 21
(7.2 g, 28%) as yellow crystals: mp 154 °C; IR (KBr) 2980,
1610, 1490, 760 cm-1; 1H NMR (CDCl3) δ 2.27-2.31 (2 H, m),
of hydrogen (300-400 kPa) on
a Parr shaker until the
theoretical uptake of hydrogen had occurred. The catalyst was
removed by filtration, and the filtrate was concentrated to
dryness. To the residue was added water (100 mL); the
resulting mixture was made alkaline using 3 N sodium
hydroxide and subsequently extracted three times with ether
(50 mL). The combined organic layer was washed with water
and dried, and the hydrochloride was precipitated by addition
of ethereal hydrochloric acid, recrystallized twice from ethanol/
ether to give 22 (2.4 g, 80%) as colorless crystals: mp 250 °C
dec; IR (KBr) 2775, 2520, 1550, 1450, 1150, 810 cm-1; 1H NMR
(CD3OD) δ 2.03-2.11 (2 H, m), 2.77 (2 H, t, J ) 7.91 Hz), 2.89
(6 H, s), 3.15-3.19 (2 H, m), 7.36 (2 H, d, J ) 8.42 Hz), 7.46
(2 H, d, J ) 8.36 Hz).
QSAR An a lysis: Com p u ta tion a l Deta ils. 1. d p (ch a n ge
in m em br a n e d en sity u p on u p ta k e of th e solu te). The
Connolly volume for the lowest potential energy state of the
reference monolayer model (without any solute) was deter-
mined. A probe with a radius of 1.4 Å was employed. The
procedure was repeated for the lowest potential energy state
of each monolayer-solute system and the corresponding