Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C8CC02636J
COMMUNICATION
Journal Name
Nie, Q. Huang and G. Zhu, Tetrahedron Lett., 2016, 57, 2331;
(f) Y. Zhang, D. Guo, S. Ye, Z. Liu and G. Zhu, Org. Lett., 2017,
19, 1302; (g) D. Lu, Y. Wan, L. Kong and G. Zhu, Org. Lett.,
2017, 19, 2929; (h) Z. Liu, Y. Bai, J. Zhang, Y. Yu, Z. Tan and G.
Zhu, Chem. Commun., 2017, 53, 6440; (i) C. Che, Z. Qian, M.
In conclusion, we have developed
a novel photocatalytic
acylarylation of unactivated alkenes using diaryliodonium
hexafluorophosphates as the arylation reagent, thus generating a
variety of 2-benzyl indanones, 3,4-dihydronaphthalen-1(2H)-ones,
and 2,3-dihydroquinolin-4(1H)-ones in promising yields at room
temperature. trans-2,3-Disubstituted indanones can be exclusively
synthesized via this protocol. The mild reaction conditions, high
efficiency, broad substrate scope, and excellent diastereoselectivity
enable it a very attractive method for the fast construction of
biologically active molecules including indanones. This reaction
represents a new type of alkene acylarylation featuring the tandem
radical arylation/acylation. It permits the successful transformation
of unactivated alkenes, thus providing a good complementary
protocol to the existing methods.
Wu, Y. Zhao and G. Zhu, J. Org. Chem., 2018, 83, DOI:
10.1021/acs.joc.8b00666.
12 (a) S. R. Neufeldt and M. S
354, 3517; (b) H. Jiang, Y. Cheng, R. Wang, Y. Zhang and S
.
Sanford, Adv. Synth. Catal
.
, 2012
,
Yu,
.
Chem. Commun., 2014, 50, 6164; (c) M. Hartmann, Y. Li, C.
Mìck-Lichtenfeld and A. Studer Chem. E r. J., 2016, 22, 3485;
,
u
(d) M. Wang, Q. Fan and X. Jiang, Org. Lett., 2016, 18, 5756;
(e) N.-W. Liu, S. Liang and G. Manolikakes, Adv. Synth. Catal.,
2017, 359, 1308; (f) X. Gong, J. Chen, J. Liu and J. Wu, Org.
Chem. Front., 2017, 4, 2221; (g) D. Sun, K. Yin and R. Zhang,
Chem. Commun., 2018, 54, 1335. For selected reviews, see:
(h) I. Ghosh, L. Marzo, A. Das, R. Shaikh and B. König, Acc.
Chem. Res., 2016, 49, 1566; (i) J.-P. Goddard, C. Ollivier and L.
Fensterbank, Acc. Chem. Res., 2016, 49, 1924; (j) E. A. Merritt
and B. Olofsson, Angew. Chem., Int. Ed., 2009, 48, 9052; (k) K.
Aradi, B. L. Tóth, G. L. Tolnai and Z. Novák, Synlett, 2016,
1456.
We thank the National Natural Science Foundation of China
(21672191), Key Laboratory of the Ministry of Education for
Advanced Catalysis Materials, and Zhejiang Normal University for
financial support.
13 (a) G. Fumagalli, S. Boyd and M. F. Greaney, Org. Lett., 2013,
15, 4398; (b) M. N. Hopkinson, B. Sahoo and F. Glorius, Adv.
Synth. Catal., 2014, 356, 2794; (c) Y. Li, T. Koike and M. Akita,
Synlett, 2016, 736; (d) A. Baralle, L. Fensterbank, J.-P.
Goddard and C. Ollivier, Chem. Eur. J., 2013, 19, 10809.
14 For selected reviews on photocatalysis, see: (a) K. Zeitler,
Angew. Chem., Int. Ed., 2009, 48, 9785; (b) D. M. Schultz and
T. P. Yoon, Science, 2014, 343, 985; (c) J. M. R. Narayanam
and C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102; (d)
D. Staveness, I. Bosque and Stephenson, C. R. J. Acc. Chem.
Res., 2016, 49, 2295; (e) N. Zheng and S. Maity, Synlett 2012,
1851. (f) L. Shi and W. Xia, Chem. Soc. Rev., 2012, 41, 7687;
Notes and references
1
For recent reviews, see: (a) K. H. Jensen and M. S. Sigman,
Org. Biomol. Chem., 2008, , 4083; (b) K. Muñiz, Angew.
6
Chem., Int. Ed., 2009, 48, 9412; (c) R. I. McDonald, G. Liu and
S. S. Stahl, Chem. Rev., 2011, 111, 2981; (d) C. Zhang, C. Tang
and N. Jia, Chem. Soc. Rev., 2012, 41, 3464; (e) S. R. Chemler
and M. T. Bovino, ACS Catal., 2013, 3, 1076; (f) E. Merino and
C. Nevado, Chem. Soc. Rev., 2014, 43, 6598; (g) R.-J. Song, Y.
Liu, Y.-X. Xie and J.-H. Li, Synthesis, 2015, 47, 1195; (h) J.-R.
Chen, X.-Y. Yu and W.-J. Xiao, Synthesis, 2015, 47, 604; (i) G.
Yin, X. Mu and G. Liu, Acc. Chem. Res., 2016, 49, 2413; (j) R. K.
Dhungana, S. Kc, P. Basnet and R. Giri, Chem. Rec., 2018, 18
DOI: 10.1002/tcr.201700098.
(g) J. Xuan and W.-J. Xiao, Angew. Chem., Int. Ed., 2012, 51
,
6828; (h) J. Xuan, Z.-G. Zhang and W.-J. Xiao, Angew. Chem.,
Int. Ed., 2015, 54, 15632; (i) C. K. Prier, D. A. Rankic and D. W.
C. MacMillan, Chem. Rev., 2013, 113, 5322; (j) M. H. Shaw, J.
,
2
3
M.-B. Zhou, R.-J. Song, X.-H. Ouyang, Y. Liu, W.-T. Wei, G.-B.
Deng and J.-H. Li, Chem. Sci., 2013, , 2690.
For other reports on alkene acylarylation using aldehydes,
see: (a) F. Jia, K. Liu, H. Xi, S. Lu and Z. Li, Tetrahedron Lett.,
2013, 54, 6337; (b) L. Lv, L. Qi, Q. Guo, B. Shen and Z. Li, J.
Org. Chem., 2015, 80, 12562; (c) B. Niu, P. Xie, W. Zhao, Y.
Twilton and D. W. C. MacMillan, J. Org. Chem., 2016, 81
,
4
6898; (k) D. Ravelli, M. Fagnoni and A. Albini, Chem. Soc. Rev.,
2013, 42, 97; (l) D. P. Hari and B. König, Angew. Chem., Int.
Ed., 2013, 52, 4734; (m) Y. Xi, H. Yi and A. Lei, Org. Biomol.
Chem., 2013, 11, 2387; (n) M. Akita and T. Koike, Synlett,
2013, 2492; (o) R. R. Knowles and H. G. Yayla, Synlett, 2014,
2819; (p) D. A. Nicewicz and D. S. Hamilton, Synlett, 2014,
1191; (q) S. Yu, Y. Zhang, R. Wang, H. Jiang, Y. Cheng, A. Kadi
and H.-K. Fun, Synthesis, 2014, 2711; (r) J. Xie, H. Jin, P. Xu
and C. Zhu, Tetrahedron Lett., 2014, 55, 36; (s) E. Meggers,
Chem. Commun., 2015, 51, 3290; (t) C. Wang and Z. Lu, Org.
Zhou, Z. Bian, C. U. Pittman Jr and A. Zhou, RSC Adv., 2014, 4,
43525; (d) P.-Y. Ji, M.-Z. Zhang, J.-W. Xu, Y.-F. Liu and C.-C.
Guo, J. Org. Chem., 2016, 81, 5181.
4
5
(a) H. Wang, L.-N. Guo and X.-H. Duan, Adv. Synth. Catal.,
2013, 355, 2222; (b) H. Yang, L.-N. Guo and X.-H. Duan, RSC
Adv., 2014, 4, 52986; (c) W. Ji, H. Tan, M. Wang, P. Li and L.
Chem. Front., 2015,
Heitz and G. A. Molander, ACS Catal., 2017,
2
, 179; (u) J. K. Matsui, S. B. Lang, D. R.
, 2563.
Wang, Chem. Commun., 2016, 52, 1462.
7
(a) W.-P. Mai, J.-T. Wang, L.-R. Yang, J.-W. Yuan, Y.-M. Xiao, P.
Mao and L.-B. Qu, Org. Lett., 2014, 16, 204; (b) G. Bergonzini,
C. Cassani and C.-J. Wallentin, Angew. Chem., Int. Ed., 2015,
54, 14066.
15 K. C. Nicolaou, T. Montagnon and P. S. Baran, Angew. Chem.,
Int. Ed., 2002, 41, 1386.
16 (a) B. C. Gilbert, R. G. G. Holmes, H. A. H. Laue and R. O. C.
Norman, J. Chem. Soc. Perkin Trans.
Elford and B. P. Roberts, J. Chem. Soc. Perkin Trans.
2, 1976, 1047; (b) P. E.
6
7
8
9
L. Zheng, H. Huang, C. Yang and W. Xia, Org. Lett., 2015, 17,
1034.
G. Bergonzini, C. Cassani, H. Lorimer-Olsson, J. Hörberg and
C.-J. Wallentin, Chem. Eur. J., 2016, 22, 3292.
M.-Z. Zhang, P.-Y. Ji, Y.-F. Liu and C.-C. Guo, J. Org. Chem.,
2015, 80, 10777.
2, 1996,
2247; (c) K. G. Konya, T. Paul, S. Lin, J. Lusztyk and K. U.
Ingold, J. Am. Chem. Soc., 2000, 122, 7518.
C. Pan, Q. Ni, Y. Fu and J.-T. Yu, J. Org. Chem., 2017, 82, 7683.
10 J. A. Walker, K. L. Vickerman, J. N. Humke and L. M. Stanley, J.
Am. Chem. Soc., 2017, 139, 10228.
11 (a) C. Cheng, S. Liu, D. Lu and G. Zhu, Org. Lett., 2016, 18
,
2852; (b) X. Nie, C. Cheng and G. Zhu, Angew. Chem., Int. Ed.,
2017, 56, 1898; (c) W. Jin, Y. Zhou, Y. Zhao, Q. Ma, L. Kong
and G. Zhu, Org. Lett., 2018, 20, 1435; (d) C. Che, Q. Huang,
H. Zheng and G. Zhu, Chem. Sci., 2016,
4 | J. Name., 2012, 00, 1-3
7, 4134; (e) H. Zhu, X.
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins