the oxonium ylide generated from the Z-crotyl ether to
rearrange via the exo transition state (vi f viii) or the ylide
generated from the E-crotyl ether to rearrange via the endo
transition state (v f ix).
Scheme 1
It was not possible to predict whether rearrangement of
the oxonium ylide would proceed via an exo or endo
transition state based on literature data.5b,6 Consequently, we
prepared both the E- and Z-crotyl ether precursors and treated
each of them with copper(II) acetylacetonate to determine
the stereochemical outcome of the oxonium ylide formation
and [2,3] rearrangement process.
The Z-crotyl ether precursor was prepared from dimethyl
malate (1), using the route shown in Scheme 3. Regioselec-
Scheme 3
to the alkene iv, the key intermediate in our route. The
intermediate iv is then disconnected to give the diazo ketones
v/vi (Vide infra) and further functional group interconversion
and cleavage of the crotyl ether gives the methyl ester vii,
which can be obtained from (S)-malic acid.3
The key reaction in our route was to be the generation of
a copper carbenoid from the diazo ketone v/vi followed by
oxonium ylide formation and rearrangement, resulting in
C-O and C-C bond formation with concomitant ring
closure and the creation of two stereogenic centers (Scheme
2).4,5 If the rearrangement of the ylide proceeded through
Scheme 2
tive directed ester reduction, using conditions first described
by Moriwake and co-workers,3 followed by selective tert-
butyldiphenylsilyl protection of the resulting primary hy-
droxyl group afforded the alcohol 2. The alcohol was then
converted into the propargylic ether 3 by triethylsilyl
trifluoromethanesulfonate or trifluoromethanesulfonic acid
mediated reaction with butynyl 2,2,2-trichloroacetimidate,7
and subsequent Lindlar reduction produced the Z-crotyl ether
4a in a highly stereoselective manner. The Z-crotyl ether 4a
was transformed into the cyclization precursor 5a by mild
the exo transition state, the 3(2H)furanone viii would be
obtained, whereas rearrangement through the endo transition
state would deliver the isomeric product ix. Thus, to obtain
the required diastereoisomer iv, it would be necessary for
(5) (a) Pirrung, M. C.; Werner, J. A. J. Am. Chem. Soc. 1986, 108, 6060.
(b) Roskamp, E. J.; Johnson, C. R. J. Am. Chem. Soc. 1986, 108, 6062. (c)
Eberlein, T. H.; West, F. G.; Tester, R. W. J. Org. Chem. 1992, 57, 3479.
(d) West, F. G.; Eberlein, T. H.; Tester, R. W. J. Chem. Soc., Perkin Trans.
1 1993, 2857. (e) West, F. G.; Naidu, B. N.; Tester, R. W. J. Org. Chem.
1994, 59, 6892. (f) Tester, R. W.; West, F. G. Tetrahedron Lett. 1998, 39,
4631. (g) Marmsater, F. P.; West, F. G. J. Am. Chem. Soc. 2001, 123, 5144.
(h) Marmsater, F. P.; Vanecko, J. A.; West, F. G. Tetrahedron 2002, 58,
2027.
(6) Doyle, M. P.; McKervey, M.; Ye, T. Modern Catalytic Methods with
Diazo Compounds; Wiley: New York, 1998; Chapter 7, pp 355-432.
(7) (a) Overman, L. E.; Clizbe, L. A. J. Am. Chem. Soc. 1976, 98, 2352.
(b) Wei, S.-Y.; Tomooka, K.; Nakai, T. J. Org. Chem. 1991, 56, 5973. (c)
Wei, S.-Y.; Tomooka, K.; Nakai, T. Tetrahedron 1993, 49, 1025.
(3) Saito, S.; Hasegawa, M.; Inaba, M.; Nishida, R.; Fujii, T.; Nomizu,
S.; Moriwake, T. Chem. Lett. 1984, 1389.
(4) (a) Clark, J. S. Tetrahedron Lett. 1992, 33, 6193. (b) Clark, J. S.;
Krowiak, S. A.; Street, L. J. Tetrahedron Lett. 1993, 34, 4385. (c) Clark,
J. S.; Whitlock, G. A. Tetrahedron Lett. 1994, 35, 6381. (d) Clark, J. S.;
Dossetter, A. G.; Whittingham, W. G. Tetrahedron Lett. 1996, 37, 5605.
(e) Clark, J. S.; Dossetter, A. G.; Blake, A. J.; Li, W.-S.; Whittingham, W.
G. Chem. Commun. 1999, 749. (f) Clark, J. S.; Bate, A. L.; Grinter, T.
Chem. Commun. 2001, 459. (g) Clark, J. S.; Whitlock, G. A.; Jiang, S.;
Onyia, N. Chem. Commun. 2003, 2578.
1774
Org. Lett., Vol. 6, No. 11, 2004