C O M M U N I C A T I O N S
Scheme 5. Convergent Coupling of Two Functionalized
Kenemans, P. Int. J. Biol. Markers 2000, 15, 343-356.
(3) (a) Dudkin, V. Y.; Miller, J. S.; Danishefsky, S. J. J. Am. Chem. Soc.
2004, 126, 736-738. (b) Peracaula, R.; Tabares, G.; Royle, L.; Harvey,
D. J.; Dwek, R. A.; Rudd, P. M.; de Llorens, R. Glycobiology 2003, 13,
457-470.
Glycopeptides Containing Distinct, Structurally Complex Glycansa
(4) (a) Ridley, D. M.; Dawkins, F.; Perlin, E. J. Natl. Med. Assoc. 1994, 86,
129-135. (b) Durand, G.; Seta, N. Clin. Chem. 2000, 46, 795-805. (c)
Koeller, K. M.; Wong, C. H. Nat. Biotechnol. 2000, 18, 835-841.
(5) Rush, R. S.; Derby, P. L.; Smith, D. M.; Merry, C.; Rogers, G.; Rohde,
M. F.; Katta, V. Anal. Chem. 1995, 67, 1442-1452.
(6) Lai, P. H.; Everett, R.; Wang, F. F.; Arakawa, T.; Goldwasser, E. J. Biol.
Chem. 1986, 261, 3116-3121.
(7) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.;
Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000,
28, 235-242.
(8) Cheetham, J. C.; Smith, D. M.; Aoki, K. H.; Stevenson, J. L.; Hoeffel, T.
J.; Syed, R. S.; Egrie, J.; Harvey, T. S. Nat. Struct. Biol. 1998, 5, 861-
866.
(9) Rahbek-Nielsen, H.; Roepstorff, P.; Reischl, H.; Wozny, M.; Koll, H.;
Haselbeck, A. J. Mass Spectrom. 1997, 32, 948-958.
(10) (a) Kornfeld, R.; Kornfeld, S. Annu. ReV. Biochem. 1985, 54, 631-664.
(b) Roth, J. Chem. ReV. 2002, 102, 285-303.
(11) Geyer, H.; Holschbach, C.; Hunsmann, G.; Schneider, J. J. Biol. Chem.
1988, 263, 11760-11767.
(12) (a) Likhosherstov, L. M.; Novikova, O. S.; Derevitskaja, V. A.; Kochetkov,
N. K. Carbohydr. Res. 1986, 146, C1-C5. (b) Cohen-Anisfeld, S. T.;
Lansbury, P. T. J. Am. Chem. Soc. 1993, 115, 10531-10537. (c) Dawson,
P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. H. Science 1994, 266,
776-779.
(13) Miller, J. S.; Dudkin, V. Y.; Lyon, G. J.; Muir, T. W.; Danishefsky, S. J.
Angew. Chem., Int. Ed. 2003, 42, 431-434.
(14) (a) Mandal, M.; Dudkin, V. Y.; Geng, X.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2004, 43, 2557-2561. (b) Geng, X.; Dudkin, V. Y.;
Mandal, M.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2004, 43, 2562-
2575.
(15) For the state of the art in biological approaches toward multiply
glycosylated proteins, see: Zhang, Z.; Gildersleeve, J.; Yang, Y. Y.; Xu,
R.; Loo, J. A.; Uryu, S.; Wong, C. H.; Schultz, P. G. Science 2004, 303,
371-373.
a Reagents and conditions: (a) 25 or 26, HATU, DIEA, DMSO, 50%
for 27 (from 22), 71% for 28 (from 23); (b) 20% piperidine in DMF, 63%;
(c) 0.2 M phosphate, 0.2 M NaCl, pH ∼7.4, excess MES-Na, 75%.
With this demonstration secure, we now addressed the critical
coupling of 27 and 28, shown in Scheme 5. This reaction was
accomplished smoothly upon reductive cleavage of the disulfide
linkage in 27, affording 29 as shown. Aside from validating the
methodology in a striking way, the synthesis of 29 serves to pinpoint
the power of the total synthesis approach. Since one of its
carbohydrates is unnatural, 29 cannot readily be obtained from
natural sources or via enzymatic manipulations.
(16) Significant advances in this type of problem arose through the use of
Ellman’s Fmoc-based sulfonamide linker (Shin, Y.; Winans, K. A.; Backes,
B. J.; Kent, S. B. H.; Ellman, J. A.; Bertozzi, C. R. J. Am. Chem. Soc.
1999, 121, 11684-11689), which has been employed in the synthesis of
glycopeptide thioesters. The method we practice here, however, insists
on maximal convergence, as opposed to a “cassette” approach to glycan
incorporation. We note that certain glycosidic linkages (e.g., fucosidic
linkages in erythropoietin) are particularly unstable toward the acidic
conditions (TFA) required for protecting group cleavage. Other “cassette”-
based Fmoc solid-phase peptide synthesis (SPPS) techniques potentially
leading to glycopeptide thioesters also include acidic conditions at some
point. These methods involve alteration of the Fmoc deblocking conditions
[(a) Li, X. Q.; Kawakami, T.; Aimoto, S. Tetrahedron Lett. 1998, 39,
8669-8672. (b) Clippingdale, A. B.; Barrow, C. J.; Wade, J. D. J. Pept.
Sci. 2000, 6, 225-234. (c) Hojo, H.; Haginoya, E.; Matsumoto, Y.;
Nakahara, Y.; Nabeshima, K.; Toole, B. P.; Watanabe, Y. Tetrahedron
Lett. 2003, 44, 2961-2964], or direct conversion into thioesters of
C-terminal acids (von Eggelkraut-Gottanka, R.; Klose, A.; Beck-Sickinger,
A. G.; Beyermann, M. Tetrahedron Lett. 2003, 44, 3551-3554), esters
(Swinnen, D.; Hilvert, D. Org. Lett. 2000, 2, 2439-2442), or trithioortho
esters (Brask, J.; Albericio, F.; Jensen, K. J. Org. Lett. 2003, 5, 2951-
2953). Boc-based SPPS employs strongly acidic cleavage conditions
(liquid HF) that are incompatible with many glycosidic linkages.
(17) A phenolic ester may function as an acylating agent when employed in
conjunction with an intramolecularly disposed amine equivalent that is
generated in situ via Staudinger chemistry. For examples, see: (a) Nilsson,
B. L.; Kiessling, L. L.: Raines, R. T. Org. Lett. 2000, 2, 1939-1941. (b)
Saxon E.: Armstrong, J. I.; Bertozzi, C. R. Org Lett. 2000, 2, 2141-
2143.(c) Bianchi, A.; Bernardi, A. Tetrahedron Lett. 2004, 45, 2231-
2234.
In summary, the goal set forth in Scheme 1sa convergent method
for the synthesis of bifunctional glycopeptidesshas been met. The
mechanistic rationale set forth in Scheme 2 is supported by the
identification of the MES-Na thioester as a reaction intermediate.
Furthermore, potential hydrolysis and C-terminal epimerization of
the glycopeptide acyl donor have been suppressed. It seems likely
that the method and logic set forth above will enjoy application in
the building of complex glycopeptides of biological and even
medicinal consequence.
Acknowledgment. This work was supported by the NIH
[CA103823 (formerly AI16943)]. We thank Dr. George Sukenick
1
(NMR Core Facility, CA02848) for help with H NMR analyses
and Ms. Anna Dudkina and Ms. Sylvi Rusli for help with mass
spectral analyses and HPLC separations. We also thank Dr. Vadim
Dudkin for helpful discussions. Postdoctoral fellowship support is
gratefully acknowledged by J.D.W. (NIH, CA62948), J.S.M. (U.S.
Army Prostate Cancer Research Program, PC020147), and S.J.K.
(NIH, AI051883).
Supporting Information Available: Experimental procedures and
compound characterization data, including LCMS and NMR data (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
(18) See: Verhaeghe, J.; Lacassie, E.; Bertrand, M.; Trudelle, Y. Tetrahedron
Lett. 1993, 34, 461-464 and references therein.
(19) Caserio, M. C.; Fisher, C. L.; Kim, J. K. J. Org. Chem. 1985, 50, 4390-
4393.
(20) The protected peptide acid was synthesized by Fmoc SPPS.
(21) Glycopeptide 18 was prepared as described previously (ref 13).
(22) O-Linked glycopeptide precursors to 20 and 21 were synthesized using a
cassette approach, in which the Fmoc serine monomers used in SPPS
contained pendant saccharides.
(23) Kemp, D. S. In The Peptides: Analysis, Synthesis, Biology; Gross, E.,
Meienhofer, J., Eds.; Academic Press: New York, 1979; Vol. 1, Part A,
pp 315-381.
References
(1) (a) Imperiali, B.; O’Connor, S. E.; Hendrickson, T.; Kellenberger, C. Pure
Appl. Chem. 1999, 71, 777-787. (b) Lis, H.; Sharon, N. Eur. J. Biochem.
1993, 218, 1-27. (c) Rudd, P. M.; Elliott, T.; Cresswell, P.; Wilson, I.
A.; Dwek, R. A. Science 2001, 291, 2370-2376. (d) Bertozzi, C. R.;
Kiessling, L. L. Science 2001, 291, 2357-2364.
(2) (a) Calarese, D. A.; Scanlan, C. N.; Zwick, M. B.; Deechongkit, S.;
Mimura, Y.; Kunert, R.; Zhu, P.; Wormald, M. R.; Stanfield, R. L.; Roux,
K. H.; Kelly, J. W.; Rudd, P. M.; Dwek, R. A.; Katinger, H.; Burton, D.
R.; Wilson, I. A. Science 2003, 300, 2065-2071. (b) von Mensdorff-
Pouilly, S.; Snijdewint, F. G.; Verstraeten, A. A.; Verheijen, R. H.;
(24) Shaltiel, S.; Fridkin, M. Biochemistry 1970, 9, 5122-5127.
(25) Wang, Z. G.; Zhang, X. F.; Live, D.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 2000, 39, 3652-3656.
JA0491836
9
6578 J. AM. CHEM. SOC. VOL. 126, NO. 21, 2004