extensive decomposition, we sought to reduce the hemiacetal group
in-situ in anticipation that primary alcohol 11 would be more
tractable. Accordingly, after ozonolysis of 7 in methanol and
reduction with thiourea, the reaction mixture was concentrated and
immediately treated with sodium triacetoxyborohydride in acetic
acid18 to furnish 11 in excellent overall yield from 3.
chloride. Since this compound readily underwent ester hydrolysis,
it was immediately converted to the natural product through a
sequence of quaternization, with methyl iodide and ester hydrolysis
using alkaline Dowex 550A resin. In this manner, (2)-dysibetaine
(5) was obtained in 43% yield, over three steps.21 A comparison of
the spectroscopic and chiroptical properties of this material with
that reported by Sakai3 and Snider4 indicated a close match.
In summary, we report the total synthesis of the marine natural
product (2)-dysibetaine (5). The central features of this work
include i) construction of the 5,5-disubstituted pyrrolidinone ring
and C-5 quaternary stereocenter using a diastereoselective acylni-
trenium ion spirocyclization and ii) use of the cyclohexa-
2,5-dienone ring, generated in this transformation, as a latent
2-amino-1,3-dicarbonyl group. Further application of the nitrenium
ion spirocyclization–dienone cleavage strategy disclosed herein is
now underway in this laboratory.
Reductive cleavage of the N–O bond of 11 was accomplished by
heating this compound with Mo(CO)6 in aqueous acetonitrile.19
Exposure of the reaction mixture to air for 24 h prior to isolation
served to oxidize the remaining low-valent molybdenum species
and facilitated the purification of amide 12. Introduction of nitrogen
functionality at the C-5 hydroxymethyl group of 12 was achieved
by exposure of the corresponding mesylate to sodium azide in DMF
at elevated temperature, which provided 13 in moderate yield.20
Attempts to directly install the trimethylammonium group of 5, by
reaction of the mesylate with trimethylamine, were unsuccessful.
After removal of the triisopropylsilyl group from 13 using HF in
acetonitrile, hydrogenation of the azide group over palladium-on-
carbon in the presence of aqueous HCl provided hydrochloride 14.
This compound was now converted to 5 using the three-step
protocol reported by Snider for the corresponding ethyl ester.4
Thus, reductive methylation of 14 by hydrogenation in the presence
of formaldehyde provided the corresponding dimethylamine hydro-
We gratefully thank the National Institutes of Health (GM-
67176) for financial support of this work.
Notes and references
1 J. J. Hansen and P. Krogsgaard-Larsen, Med. Res. Rev., 1990, 10, 55.
2 M. G. Moloney, Nat. Prod. Rep., 2002, 19, 597.
3 R. Sakai, C. Oiwa, K. Takaishi, H. Kamiya and M. Tagawa,
Tetrahedron Lett., 1999, 40, 6941.
4 B. B. Snider and Y. Gu, Org. Lett., 2001, 3, 1761.
5 Synthesis of deoxydysibetaine: B. K. Le Nguyen and N. Langlois,
Tetrahedron Lett., 2003, 44, 5961.
6 (a) D. J. Wardrop and A. Basak, Org. Lett., 2001, 3, 1053; (b) D. J.
Wardrop and W. Zhang, Org. Lett., 2001, 3, 2353.
7 For reviews of nitrenium ion chemistry, see: (a) R. A. Abramovitch and
R. Jeyaraman, in Azides and Nitrenes: Reactivity and Utility, ed. E. F. V.
Scriven, Academic Press, Orlando, 1984, Chapter 6; (b) Y. Kikugawa,
Rev. Heteroatom Chem., 1996, 15, 263; (c) D. E. Falvey, in Reactive
Intermediate Chemistry, ed. R. A. Moss, M. S. Platz and M. Jones, Jr.,
Wiley, New York, 2004, Chapter 13.
8 D. J. Wardrop, M. S. Burge, W. Zhang and J. A. Ortíz, Tetrahedron
Lett., 2003, 44, 2587.
9 D. J. Wardrop, C. L. Landrie and J. A. Ortíz, Synlett, 2003, 1352.
10 S. Omura, K. Matsuzaki, T. Fujimoto, K. Kosuge, T. Furuya, S. Fujita
and A. Nakagawa, J. Antibiot., 1991, 44, 117.
11 R. W. Hoffmann, Chem. Rev., 1989, 89, 1841.
12 (a) C. L. Kirkemo and J. D. White, J. Org. Chem., 1985, 50, 1316; (b)
D. A. Evans, J. A. Gauchet-Prunet, E. M. Carreira and A. B. Charette,
J. Org. Chem., 1991, 56, 741.
13 (a) E. Caspi, W. Schmid and B. T. Khan, Tetrahedron, 1962, 18, 767;
(b) R. C. Cambie, P. I. Higgs, C. M. Read, P. S. Rutledge, G. R. Ryan
and P. D. Woodgate, Aust. J. Chem., 1990, 43, 681.
14 K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung,
K. S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, D. Q. Xu and X.
L. Zhang, J. Org. Chem., 1992, 57, 2768.
15 M. Nakajima, K. Tomioka and K. Koga, Tetrahedron, 1993, 49,
10807.
16 Determined by NMR analysis of the (R)-(+)-a-methoxy-a-(trifluor-
omethyl)phenylacetate (MTPA) derivative.
17 D. Gupta, R. Soman and S. Dev, Tetrahedron, 1982, 38, 3013.
18 G. Y. Ishmuratov, R. Y. Kharisov, M. P. Yakovleva, O. V. Botsman, R.
R. Muslukhov and G. A. Tolstikov, Russ. J. Org. Chem., 2001, 37,
37.
19 S. Cicchi, A. Goti, A. Brandi, A. Guarna and F. De Sarlo, Tetrahedron
Lett., 1990, 31, 3351.
Scheme 3 Reagents and conditions: [i] AD-mix-b, CH3SO2NH2, t-BuOH,
H2O, 0 °C, 24 h, 91%; [ii] Et3SiH, CF3CO2H, CH2Cl2, 0 °C, 10 min, 84%,
> 98% ee; [iii] TIPS-Cl, Im, DMAP, DMF, rt, 36 h, 99%; [iv] KOH,
MeOH, reflux, 16 h, 98%; [v] i-BuOCOCl, Et3N; MeONH2·HCl, CH2Cl2,
rt, 16 h, 88%; [vi] PIFA (1.2 equiv.), CH2Cl2, MeOH, 278 ? 230 °C, 1 h,
99%, dr = 90 : 10; [vii] O3/O2, MeOH, 278 °C, 1 h; thiourea, 278 °C ?
rt, 30 min; NaBH(OAc)3, AcOH, rt, 4 h, 91%; [viii] Mo(CO)6, CH3CN–
H2O (15 : 1), reflux, 24 h; air, rt, 24 h, 90%; [ix] MsCl, Et3N, CH2Cl2, 0 °C,
3 h, 87%; [x] NaN3, DMF, 80 °C, 24 h, 63%; [xi] HF, CH3CN, rt, 4 h, 91%;
[xii] H2 (50 psi), Pd/C (10%), HCl aq., MeOH, rt, 1.5 h, 99%; [xiii] i) H2 (50
psi), CH2O, Pd/C (10%), H2O, rt; ii) MeI, THF, rt, 36 h; iii) Dowex-550A,
MeOH, 55 °C, 24 h, 43% (3 steps).
20 S. Knapp and A. T. Levorse, J. Org. Chem., 1988, 53, 4006.
21 Synthetic (2)-dysibetaine (5): [a]24D 28.0 (c 0.30, H2O), [lit.3 [a]20
D
27.3 (c 0.26, H2O)]; 1H NMR (500 MHz, D2O) d 4.20 (dd, J = 7.8, 5.4
Hz, 1 H, H-3), 3.89 (d, J = 13.9 Hz, 1 H, H-6), 3.59 (d, J = 13.9 Hz,
1 H, H-6), 3.05 (s, 9 H, NMe3), 2.51 (dd, J = 14.0, 7.8 Hz, 1 H, H-4),
1.85 (dd, J = 14.0, 5.4 Hz, 1 H, H-4); 13C NMR (125 MHz, CD3OD/
D2O) d 179.6 (CO), 176.8 (CO), 73.1 (C-3), 69.1 (C-6), 64.1 (C-5), 55.6
(NMe3), 42.4 (C-4).
C h e m . C o m m u n . , 2 0 0 4 , 1 2 3 0 – 1 2 3 1
1231