ACS Medicinal Chemistry Letters
LETTER
Selective expression of a novel surface molecule by human Th2 cells
in vivo. J. Immunol. 1999, 162, 1278–1286.
Middlemiss, D.; Whittaker, M.; Xue, L.; Pettipher, R. Indole-3-acetic
Acid Antagonists of the Prostaglandin D2 Receptor CRTH2. J. Med.
Chem. 2005, 48, 6174–6177.
(24) Liu, J.; Fu, Z.; Wang, Y.; Schmitt, M.; Huang, A.; Marshall, D.;
Tonn, G.; Seitz, L.; Sullivan, T.; Tang, H. L.; Collins, T.; Medina, J.
Discovery and optimization of CRTH2 and DP dual antagonists. Bioorg.
Med. Chem. Lett. 2009, 19, 6419–6423.
(8) Cosmi, L.; Annunziato, F.; Galli, M. I. G.; Maggi, R. M. E.;
Nagata, K.; Romagnani, S. CRTH2 is the most reliable marker for the
detection of circulating human type 2 Th and type 2 T cytotoxic cells in
health and disease. Eur. J. Immunol. 2000, 30, 2972–2979.
(9) Mitsumori, S. Recent Progress in Work on PGD2 Antagonists for
Drugs Targeting Allergic Diseases. Curr. Pharm. Des. 2004, 10, 3533–3538.
(10) Nagai, H. Prostaglandin as a Target Molecule for Pharma-
cotherapy of Allergic Inflammatory Diseases. Allergol. Int. 2008, 57,
187–196.
(11) Miadonna, A.; Tedeschi, A.; Brasca, C.; Folco, G. C.; Sala, A.;
Murphy, R. C. Mediator release after endobronchial antigen challenge
in patients with respiratory allergy. J. Allergy Clin. Immunol. 1990, 85,
906–913.
(12) Turner, N. C.; Fuller, R. W.; Jackson, D. M. Eicosanoid release
in allergen-induced bronchoconstriction in dogs. Its relationship to
airways hyperreactivity and pulmonary inflammation. J. Lipid Mediat.
Cell Signal 1995, 11, 93–102.
(13) Hirai, H.; Tanaka, K.; Yoshie, O.; Ogawa, K.; Kenmotsu, K.;
Takamori, Y.; Ichimasa, M.; Sugamura, K.; Nakamura, M.; Takano, S.;
Nagata, K. Prostaglandin D2 selectively induces chemotaxis in T helper
type 2 cells, eosinophils, and basophils via seven-transmembrane
receptor CRTH2. J. Exp. Med. 2001, 193, 255–261.
(14) Sugimoto, H.; Shichijo, M.; Iino, T.; Manabe, Y.; Watanabe, A.;
Shimazaki, M.; Gantner, F.; Bacon, K. B. An orally bioavailable small
molecule antagonist of CRTH2, ramatroban (BAY u3405), inhibits
prostaglandin D2-induced eosinophil migration in vitro. J. Pharmacol.
Exp. Ther. 2003, 305, 347–352.
(15) Monneret, G.; Gravel, S.; Diamond, M.; Rokach, J.; Powell,
W. S. Prostaglandin D2 is a potent chemoattractant for human eosino-
phils that acts via a novel DP receptor. Blood 2001, 98, 1942–1948.
(16) Gosset, P.; Bureau, F.; Angeli, V.; Pichavant, M.; Faveeuw, C.;
Tonnel, A. B.; Trottein, F. Prostaglandin D2 affects the maturation of
human monocyte-derived dendritic cells: Consequence on the polariza-
tion of naive Th cells. J. Immunol. 2003, 170, 4943–4952.
(17) Tumey, L. N.; Robarge, M. J.; Gleason, E.; Song, J.; Murphy,
S. M.; Ekema, G.; Doucette, C.; Hanniford, D.; Palmer, M.; Pawlowski,
G.; Danzig, J.; Loftus, M.; Hunady, K.; Sherf, B.; Mays, R. W.; Stricker-
Krongrad, A.; Brunden, K. R.; Bennani, Y. L.; Harrington, J. J. 3-Indolyl
sultams as selective CRTh2 antagonists. Bioorg. Med. Chem. Lett. 2010,
20, 3287–3290.
(18) Grimstrup, M.; Receveur, J. M.; Rist, O.; Frimurer, T. M.;
Nielsen, P. A.; Mathiesen, J. M.; H€ogberg, T. Exploration of SAR features
by modifications of thiazoleacetic acids as CRTH2 antagonists. Bioorg.
Med. Chem. Lett. 2010, 20, 1638–1641.
(25) Liu, J.; Li, A.; Wang, Y.; Johnson, M.; Su, Y.; Shen, W.; Wang,
X.; Lively, S.; Brown, M.; Lai, S.; Gonzalez Lopez De Turiso, F.; Xu, Q.;
Van Lengerich, B.; Schmitt, M.; Fu, Z.; Sun, Y.; Lawlis, S.; Seitz, L.;
Danao, J.; Wait, J.; Ye, Q.; Tang, L.; Grillo, M.; Collins, T.; Sullivan, T.;
Medina, J. Discovery of AMG 853, a CRTH2 and DP Dual Antagonist.
ACS Med. Chem. Lett. 2011, 54, DOI: 10.1021/ml1002234.
(26) The CRTH2 radioligand binding assay was performed on HEK
293 cells stably expressing human CRTH2. To measure binding, [3H]-PGD2
was incubated together with HEK 293 (hCRTH2) cells in the presence
of increasing concentrations of compounds. After washing, the amount
of [3H]-PGD2 that remained bound to the cells was measured by
scintillation counting, and the concentration of compounds required to
achieve a 50% inhibition of [3H]-PGD2 binding (the IC50) was
determined. The binding buffer contains either 0.5% bovine serum
albumin (buffer binding) or 50% human plasma (plasma binding).
(27) The lowest energy conformations for compounds were gener-
ated using a stochastic search of bond torsions followed by energy
minimization using the MMFF95 force field, as implemented in MOE
(Chemical Computing Group, v2009.10). The lowest energy conforma-
tions were then manually superimposed.
(28) Human erythrocytes and granulocytes were enriched from
normal donor peripheral blood by Isolymph (Gallard-Schlesinger
Industries, Plainview, NY) gradient centrifugation. The erythrocytes
were removed using ACK lysing buffer (Gibco, Carlsbad, CA). The
mixed granulocyte population was preincubated with vehicle (0.05%
DMSO) or antagonists for 10 min at room temperature prior to
stimulation with PGD2 (0.003À600 nM at 1:3 dilution) (Cayman
Chemical Co., Ann Arbor, MI) for 10 min at 37 °C. The cells were
fixed using 1% final paraformaldehyde (Alpha Aesar, Ward Hill, MA)
and were analyzed on a FACS caliber (BD Biosciences, San Jose, CA)
flow cytometer. Leukocytes were gated on using forward/side scatter
parameters. The FL2 positive cells (eosinophils) were then gated, and
their geometric mean of the forward scatter was calculated. The
geometric means were graphed using GraphPad Prism 5 (GraphPad
Software Inc., La Jolla, CA), and IC50 values were calculated. The Kb
values were calculated from their IC50 values using the equation A/(R À 1)
where A is the concentration of the inhibitor used. The value R = X/Y
where X is the IC50 value of PGD2 in the presence of the inhibitor and Y
is the IC50 value of PGD2 alone.
(19) Liu, J.; Wang, Y.; Sun, Y.; Marshall, D.; Miao, S.; Tonn, G.;
Anders, P.; Tocker, J.; Tang, H. L.; Medina, J. Tetrahydroquinoline
derivatives as CRTH2 antagonists. Bioorg. Med. Chem. Lett. 2009, 19,
6840–6844.
(20) Stearns, B. A.; Baccei, C.; Bain, G.; Broadhead, A.; Clark, R. C.;
Coate, H.; Evans, J. F.; Fagan, P.; Hutchinson, J. H.; King, C.; Lee, C.;
Lorrain, D. S.; Prasit, P.; Prodanovich, P.; Santini, A.; Scott, J. M.; Stock,
N. S.; Truong, Y. P. Novel tricyclic antagonists of the prostaglandin D2
receptor DP2 with efficacy in a murine model of allergic rhinitis. Bioorg.
Med. Chem. Lett. 2009, 19, 4647–4651.
(21) Ulven, T.; Kostenis, E. Minor Structural Modifications Convert
the Dual TP/CRTH2 Antagonist Ramatroban into a Highly Selective
and Potent CRTH2 Antagonist. J. Med. Chem. 2005, 48, 897–900.
(22) Crosignani, S.; Page, P.; Missotten, M.; Colovray, V.; Cleva, C.;
Arrighi, J. F.; Atherall, J.; Macritchie, J.; Martin, T.; Humbert, Y.; Gaudet,
M.; Pupowicz, D.; Maio, M.; Pittet, P. A.; Golzio, L.; Giachetti, C.;
Rocha, C.; Bernardinelli, G.; Filinchuk, Y.; Scheer, A.; Schwarz, M. K.;
Chollet, A. Discovery of a New Class of Potent, Selective, and Orally
Bioavailable CRTH2 (DP2) Receptor Antagonists for the Treatment of
Allergic Inflammatory. Diseases. J. Med. Chem. 2008, 51, 2227–2243.
(23) Armer, R. E.; Ashton, M. R.; Boyd, E. A.; Brennan, C. J.;
Brookfield, F. A.; Gazi, L.; Gyles, S. L.; Hay, P. A.; Hunter, M. G.;
518
dx.doi.org/10.1021/ml200019y |ACS Med. Chem. Lett. 2011, 2, 515–518