1558
Y.-S. Lin et al. / Spectrochimica Acta Part A 79 (2011) 1552–1558
CN−. Therefore, the colorimetric sensor 1 can be used practically to
determine CN− ion.
Acknowledgements
We thank the National Science Council of Republic of China for
the financial support (NSC 98-2119-M-126-001-MY2).
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] E. Bianchi, K. Bowman-James, E. Garcia-Espana (Eds.), Wiley-VCH, New York,
1997.
[2] R. Martinez-Manez, F. Sancenon, Chem. Rev. 103 (2003) 4419–4476.
[3] Z. Xu, X. Chen, H.N. Kim, J. Yoon, Chem. Soc. Rev. 39 (2010) 127–137.
[4] K.W. Kulig, Cyanide Toxicity, US Department of Health and Human Services,
Atlanta, GA, 1991.
[5] S.I. Baskin, T.G. Brewer, in: F.R. Sidell, E.T. Takafuji, D.R. Franz (Eds.), Medical
Aspects of Chemical and Biological, Warfare TMM Publications, Washington,
DC, 1997, pp. 271–286.
[6] C. Baird, M. Cann, Environmental Chemistry, Freeman, New York, 2005.
[7] G.C. Miller, C.A. Pritsos, Cyanide, social industrial and economic aspects, Proc.
TMS Annu. Meeting (2001) 73–81.
[8] Y.M. Chung, B. Raman, D.-S. Kim, K.H. Ahn, Chem. Commun. (2006) 186–188.
[9] M. Tomasulo, S. Sortino, A.J.P. White, F.M. Raymo, J. Org. Chem. 71 (2006)
744–753.
[10] M. Tomasolu, F.M. Raymo, Org. Lett. 7 (2005) 4633–4636.
[11] F.C. Chow, M.H.W. Lam, W.Y. Wong, Inorg. Chem. 43 (2004) 8387–8393.
[12] D. Felscher, M. Wulfmeyer, J. Anal. Toxicol. 22 (1998) 363–366.
[13] J.V. Ros-Lis, R. Martínez- Mán˜ez, J. Soto, Chem. Commun. (2002) 2248–2249.
[14] A. Ajayaghosh, Acc. Chem. Res. 38 (2005) 449–459.
Fig. 9. (a) Photographs of the test kit with 1 for detecting CN− anion in aque-
ous solution (DMSO/H2O = 6/4, v/v) with different concentrations. Left to right: 0,
5.0 × 10−5 M and 1.0 × 10−4 M. (b) Photographs of the test kits with 1 for detecting
miscellaneous anions including F−, Cl−, Br−, I−, SCN−, AcO−, NO3−, H2PO4− and CN−
(1.0 × 10−4 M) in aqueous solution (DMSO/H2O = 6/4, v/v).
intensity of this absorption peak was gradually decreased, while
CN− ions (Fig. SI-8c). The color of the solution changes from yel-
low to red color in the presence of CN− ions is shown in Fig. 8. The
detection limit of 3 for CN− ions is also determined to be 3.41 M
(Fig. SI-9). However, the selectivity of 3 for cyanide was interfered
by F−, AcO−, and H2PO4− (Fig. SI-10). Apparently, the receptor 1 has
the best detect limit and the least interference among these three
receptors.
[15] N. Gimeno, X. Li, J.R. Durrant, R. Vilar, Chem. Eur. J. 14 (2008) 3006–3012.
[16] Z. Xu, J. Pan, D.R. Spring, J. Cui, J. Yoon, Tetrahedron 66 (2010) 1678–1683.
[17] S.-J. Hong, J. Yoo, S.-H. Kim, J.S. Kim, J. Yoon, C.-H. Lee, Chem. Commun. (2009)
189–191.
[18] D.-S. Kim, K.H. Ahn, J. Org. Chem. 73 (2008) 6831–6834.
[19] S.-H. Kim, S.-J. Hong, J. Yoo, S.K. Kim, J.L. Sessler, C.-H. Lee, Org. Lett. 11 (2009)
3626–3629.
[20] J.H. Lee, A.R. Jeong, I.-S. Shin, H.-J. Kim, J.-I. Hong, Org. Lett. 12 (2010) 764–767.
[21] M.O. Odago, D.M. Colabello, A.J. Lees, Tetrahedron 66 (2010) 7464–7471.
[22] R. Guliyev, O. Buyukcakir, F. Sozmen, O.A. Bozdemir, Tetrahedorn Lett. 50 (2009)
5139–5141.
[23] H.-T. Niu, X. Jiang, J. He, J.-P. Cheng, Tetrahedorn Lett. 50 (2009) 6668–6671.
[24] X. Lou, L. Qiang, J. Qin, Z. Li, ACS Appl. Mater. Interfaces 1 (2009) 2529–2535.
[25] T. Abalos, S. Royo, R. Martinez-Manez, F. Sancenon, J. Soto, A.M. Costero, S. Gil,
M. Parra, New J. Chem/ 33 (2009) 1641–1645.
1 for CN− anion tested, the test strips were carried out. They were
prepared by immersing filter papers into a DMSO/H2O (6/4, v/v)
solution of 1 (0.1 M) and then drying in vacuum (oven temperature
100–110◦ C, 70 mmHg). The test strips containing 1 were utilized
to sense different anions (Fig. 9). To these anion solutions, differ-
ent test kits were immersed. An immediate obvious color change
was observed only with CN− solution. Also, these test strips were
applied for sensing different CN− concentrations, exhibiting colori-
metric changes differentiable by naked eyes. As depicted in Fig. 9a,
the color changes of the test strips changing from 0 to 5.0 × 10−5
and 1.0 × 10−4 M show that the discernible concentration of CN−
can be as low 1.0 × 10−4 M.
[26] X. Chen, S.-W. Nam, G.-H. Kim, N. Song, Y. Jeong, I. Shin, S.K. Kim, J. Kim, S. Park,
J. Yoon, Chem. Commun. 46 (2010) 8953–8955.
[27] P. Anzenbacher Jr., K. Jursíková, F.N. Castellano, J. Am. Chem. Soc. 124 (2002)
6232.
[28] S.S. Sun, A.J. Lees, Chem. Commun. (2000) 1687–1688.
[29] H. Miyaji, J.L. Sessler, Angew. Chem. Int. Ed. 40 (2001) 154–157.
[30] F. García, J.M. García, B. García-Acosta, R. Martíne-Mán˜ez, F. Sancenon, J. Soto,
Chem. Commun. (2005) 2790–2792.
[31] H. Lee, Y.M. Chung, K.H. Ahn, Tetrahedorn Lett. 49 (2008) 5544–5547.
[32] H. Miyaji, D.-S. Kim, B.-Y. Chang, S.-M. Park, K.H. Ah, Chem. Commun. (2008)
753–755.
[33] Y. Chung, K.H. Lee, J. Org. Chem. 71 (2006) 9470–9474.
[34] Y.-K. Yang, J. Tae, Org. Lett. 8 (2006) 5721–5724.
[35] K.-S. Lee, J.T. Lee, J.-I. Hong, H.-J. Kim, Chem. Lett. 36 (2007) 816–820.
[36] K.-S. Lee, H.-J. Kim, G.-H. Kim, I. Shin, J.I. Hong, Org. Lett. 10 (2008) 49–51.
[37] C.-L. Chen, Y.-H. Chen, C.-Y. Chen, S.-S. Sun, Org. Lett. 8 (2006) 5053–5056.
[38] H.-T. Niu, X. Jiang, J. He, J.-P. Cheng, Tetrahedron Lett. 49 (2008) 6521–6524.
[39] Y. Sun, W.G. Wang, W. Gao, Tetrahedron 65 (2009) 3480–3485.
[40] S.K. Kwon, S. Kou, H.N. Kim, X. Chen, H. Hwang, S.-W. Nam, S.H. Kim, K.M.K.
Swamy, S. Park, J. Yoon, Tetrahedron Lett. 49 (2008) 4102–4105.
[41] D.-G. Cho, J.H. Kim, J.L. Sessler, J. Am. Chem. Soc. 130 (2008) 12163–12167.
[42] M. Boiocchi, L.D. Boca, D. Esteban-Gomez, L. Fabbrizzi, M. Licchelli, E. Monzani,
Chem. Eur. J. 11 (2005) 3097–3104.
[43] K.A. Connors, Binding Constants: The Measurement of Molecular Complex Sta-
bility, John Wiley, New York, 1987.
[44] Detection limit is defined by 3 ꢂ/K. Here ꢂ and K refer to the standard deviation
of the blank solutions and the slope (ꢂ) of the linear regression curve observed
in Fig. 6b, respectively. See A. Ono, H. Togashi, Angew. Chem. Int. Ed. 43 (2004)
4300–4302.
4. Conclusion
In conclusion, three colorimetric anion receptors 1–3 were syn-
thesized. Among them, receptor 1 shows high selectivity toward
CN− ion over miscellaneous competitive anions and also distin-
guishes CN− from other anions by color changes. In DMSO/H2O
(6/4, v/v) solution, the receptor 1 can selectively detect cyanide ion
with a detection limit of 1.27 M. While the test strip containing 1
also exhibits a good selectivity and sensitivity (ca. 1.0 × 10−4 M) to