BULLETIN OF THE
Article Study of Heteroaromatic Chalcone Derivatives as Potential Antibacterial Agents KOREAN CHEMICAL SOCIETY
11. T. N. Doan, D. T. Tran, Pharmacol. Amp. Pharm. 2011, 2, 282.
12. A. Raguraman, N. Santhi, Int. Lett. Chem. Phys. Astron.
2014, 20, 219.
─COOH with ARG76 and ASP129 residues, respectively.
Hydrogen bond is the most important interactions specifi-
cally in biological processes to provide specificity and sta-
bilization of binding between the ligands and enzyme
active site.53 The main interaction appeared to be in contact
with the Ar group of 3a indicating for aryl–aryl and alkyl–
aryl interactions with various amino acid residues such as
LYS122, GLU126, PHE24, ASN76, GLU73, and ILE42.52
13. S. U. F. Rizvi, H. L. Siddiqui, M. N. Ahmad, M. Ahmad,
M. H. Bukhari, Med. Chem. Res. 2012, 21, 1322.
14. E. Winter, P. Devantier Neuenfeldt, L. D. Chiaradia-
Delatorre, C. Gauthier, R. A. Yunes, R. J. Nunes, T. B.
Creczynski-Pasa, A. Di Pietro, J. Med. Chem. 2014, 57, 2930.
15. A. Kumar, A. Dwivedi, A. K. Srivastava, N. Misra, B.
Narayana, S. Samshuddin, B. K. Sarojini, Polycycl. Aromat.
Compd. 2017, 37, 267.
Conclusions
16. S. Sinha, B. Medhi, R. Sehgal, J. Mod. Med. Chem. 2013, 1, 64.
17. A. Solankee, R. Tailor, Chem. Int. 2016, 2, 189.
18. S. Hu, S. Zhang, Y. Hu, Q. Tao, A. Wu, Dyes Pigments
2013, 96, 509.
19. A. S. Girgis, A. H. Basta, H. El-Saied, M. A. Mohamed,
A. H. Bedair, A. S. Salim, R. Soc. Open Sci. 2018, 5, 171964.
20. D. Xiao, L. Xi, W. Yang, H. Fu, Z. Shuai, Y. Fang, J. Yao,
J. Am. Chem. Soc. 2003, 125, 6740.
21. H. Ahankar, A. Ramazani, K. S´lepokura, T. Lis, SW. Joo,
Green Chem. 2016, 18, 3582.
22. C. Z. W. Sie, Z. Ngaini, N. Suhaili, E. Madiahlagan, J. Chem.
2018, 2018, 1.
Three series of chalcone derivatives 1a–c, heteroaromatic
chalcone derivatives of pyrazoline 2a–c, 3a–c and hetero-
aromatic chalcone esters derivatives 4a–c have been effica-
ciously synthesized via conventional and MW radiation in
excellent yield. MW-assisted synthesis demonstrated con-
venience and green route with higher yield and shorter time
than the conventional method. Compounds 1a–c, 3a, and
3b exhibited good inhibition activity against S. aureus,
where 1b and 3b demonstrated the highest inhibition zone
with 13 and 19 mm, respectively, due to the presence of
halogen, carboxylic and pyrazoline (N─N) moieties.
Molecular docking supported the experimental results of
antibacterial activity via disc diffusion method. This study
showed the convenient preparation of chalcones and
pyrazoline derivatives and their potential for antibacterial
application in pharmaceutical industries.
23. F. J. Smit, R. A. van Biljon, L.-M. Birkholtz, D. D. N’Da,
Eur. J. Med. Chem. 2015, 90, 33.
24. V. N. Badavath, A. K. Singh, S. S. Jadav, N. Mishra, A. Dev,
B. N. Sinha, V. Jayaprakash, J. Pharm. Chem. 2015, 2, 1.
25. C. Neudorfer, K. Shanab, A. Jurik, V. Schreiber, C.
Neudorfer, C. Vraka, E. Schirmer, W. Holzer, G. Ecker, M.
Mitterhauser, W. Wadsak, H. Spreitzer, Bioorg. Med. Chem.
Lett. 2014, 24, 4490.
26. J. J. Shah, K. Mohanraj, Indian J. Pharm. Sci. 2014, 76, 46.
27. J. Jasril, I. Ikhtiarudin, S. Hasti, A. Indah, N. Frimayanti, Thai
J. Pharm. Sci. 2019, 43, 83.
28. Z. Hosseinzadeh, N. Razzaghi-Asl, A. Ramazani, H.
Aghahosseini, A. Ramazani, Turk. J. Chem. 2020, 44, 194.
29. A. N. Abd Halim, Z. Ngaini, Phosphorus Sulfur Silicon Relat.
Elem. 2017, 192, 1012.
30. O. Trott, A. J. Olson, J. Comput. Chem. 2009, 31, 455.
31. Z. Ngaini, N. A. Mortadza, Nat. Prod. Res. 2019, 33, 3507.
32. M. Sapnakumari, B. Narayana, P. M. Gurubasavarajswamy,
B. K. Sarojini, Monatshefte Für Chem. – Chem. Mon. 2015,
146, 1015.
Acknowledgments. The authors would like to thank the
Ministry of Higher Education Malaysia and Universiti
Malaysia Sarawak (UNIMAS) for financial support through
F07/FRGS/1883/2019 and Postgraduate Research Grant
through F07/PGRS/1794/2019. We are also thankful to
Universiti Malaysia Sarawak for the Zamalah scholarship
awarded to Saba Farooq. Publication cost of this paper was
supported by the Korean Chemical Society.
Supporting Information. Additional supporting informa-
tion may be found online in the Supporting Information
section at the end of the article.
33. S. Viveka, P. Naik, G. K. Nagaraja, Med. Chem. Res. 2014,
23, 4189.
References
34. B. S. Kitawat, M. Singh, New J. Chem. 2014, 38, 4290.
35. N. N. Kansagara, V. R. Dangar, V. R. Shah, Int. J. Pharma.
Sci. Res. 2015, 6, 124.
1. S. Farooq, Z. Ngaini, Curr. Organocatal. 2019, 06, 184.
ꢀ
2. B. K. Kaymakçıoglu, E. E. Oruç Emre, N. Beyhan, H. Z.
36. J. Elguero, Compr. Heterocycl. Chem. 1984, 5, 167.
37. A. Voskiene, V. Mickevicˇius, Chem. Heterocycl. Compd.
ꢀ
Toklu, S. Gümrü, F. Arıcıoglu, Life Sci. Biotechnol. 2011,
1, 137.
.
2009, 45, 1485.
3. N. Kaur, D. Kishore, J. Chem. Sci. 2013, 125, 555.
4. L. S. S. Reddy, M. B. Raju, C. Sridhar, Int J Pharm Pharm
Sci 2016, 8, 247.
5. S. Farooq, Z. Ngaini, Chem. Afr. 2020, 3, 2913.
6. S. Badshah, A. Naeem, Molecules 2016, 21, 1054.
7. N. A. Shakil, M. K. Singh, M. Sathiyendiran, J. Kumar, J. C.
Padaria, Eur. J. Med. Chem. 2013, 59, 120.
8. U. Tiwari, M. Sharma, Eur. Chem. Bull. 2013, 2, 242.
9. M. A. Bhat, A. A. Khan, M. A. Al-Omar, A. A. Khan,
Biomed. Res. 2017, 28, 3082.
38. A. Padwa, Angew Chem. Int. Ed. Engl. 1976, 15, 123.
39. L. A. Carpino, J. Am. Chem. Soc. 1957, 79, 98.
40. S. B. Khan, M. Faisal, M. M. Rahman, I. A. Abdel-Latif,
A. A. Ismail, K. Akhtar, A. Al-Hajry, A. M. Asiri, K. A.
Alamry, New J. Chem. 2013, 37, 1098.
41. E. M. Sharshira, N. M. M. Hamada, Am. J. Org. Chem. 2012,
2, 26.
42. P. G. Rodríguez Ortega, M. Montejo Gámez, F. Márquez
López, J. J. López González, Chem. Asian J. 2016,
11, 1798.
10. S. Farooq, Z. Ngaini, Tetrahedron Lett. 2020, 61, 151416.
Bull. Korean Chem. Soc. 2020
© 2020 Korean Chemical Society, Seoul & Wiley-VCH GmbH
6