Journal of the American Chemical Society
Communication
In summary, the first general method for the cross-coupling of
tertiary organotrifluoroborates is described. The development of
this protocol hinged on the use of photoredox high-throughput
screening technology to identify a new ligand architecture
amenable to bulkier tertiary radical nucleophiles. Using the
conditions identified therein, an array of functionalized,
unactivated tertiary organoboron reagents were employed in
transition metal-catalyzed cross-coupling for the first time.23
These reactions generate quaternary centers, notoriously
challenging to access, that are typically forged in cross-coupling
through the use of highly reactive Kumada and Negishi partners.
In contrast, these mild conditions tolerate a number of
electrophilically sensitive functional groups such as aldehydes,
ketones, esters, and amides.
At present, a few key limitations of this protocol remain, as the
aryl bromide scope for this cross-coupling is currently limited to
electron-poor and electron-neutral systems. From the standpoint
of organoboron coupling, this limitation actually complements
existing metal-free tertiary coupling work by Aggarwal et al.,
wherein tertiary alkyl pinacol boronates can be best coupled with
electron-rich arene systems.24 The current method also exhibits a
notable absence of N-containing heteroaryl partners. In some
ways, this failure of heteroaryl systems is mitigated by the
successful implementation of tertiary alkyltrifluoroborates in
Minisci processes,25 but extension to other electrophilic sites on
heteroaryl compounds would add significant value. Further
refinement to the ligand scaffold and conditions will likely
address these two limitations, as well as the ortho-substitution
challenge; efforts in the laboratory toward this end are ongoing.
Given the growing suite of methods for the synthesis of tertiary
organoboron compounds,8 this photoredox cross-coupling is a
timely addition, enabling tertiary organoboron reagents as
partners in the installation of arylated quaternary centers.
Although limitations remain, the ligand screening data and
mechanistic interrogation will allow practitioners seeking to
employ other tertiary radical feedstocks (carboxylic acids,
halides, aldehydes, silicates, etc.) to channel these lessons into
developing new tertiary alkyl cross-couplings of broad interest.
Taken together, these findings introduce tertiary alkyl radicals to
the photoredox cross-coupling portfolio.
REFERENCES
■
(1) Woodward, R. B.; Sondheimer, F.; Taub, D.; Heusler, K.;
McLamore, W. M. J. Am. Chem. Soc. 1952, 74, 4223.
(2) (a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181.
(b) Das, J. P.; Marek, I.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q.; Monde, K.;
Harada, N.; Harada, N. Chem. Commun. 2011, 47, 4593. (c) Christoffers,
J.; Baro, A. Adv. Synth. Catal. 2005, 347, 1473.
(3) (a) Wu, C.; Yue, G.; Nielsen, C. D.-T.; Xu, K.; Hirao, H.; Zhou, J. J.
Am. Chem. Soc. 2016, 138, 742. (b) d’Augustin, M.; Palais, L.; Alexakis,
A. Angew. Chem., Int. Ed. 2005, 44, 1376. (c) Minko, Y.; Marek, I. Chem.
Commun. 2014, 50, 12597.
(4) (a) Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B. M. Angew.
Chem., Int. Ed. 2005, 44, 6924. (b) Ashimori, A.; Bachand, B.; Overman,
L. E.; Poon, D. J. J. Am. Chem. Soc. 1998, 120, 6477. (c) Jiang, B.; Xu, M.
Angew. Chem., Int. Ed. 2004, 43, 2543. (d) Mei, T.-S.; Patel, H. H.;
Sigman, M. S. Nature 2014, 508, 340. (e) Kubiak, R. W.; Mighion, J. D.;
Wilkerson-Hill, S. M.; Alford, J. S.; Yoshidomi, T.; Davies, H. M. L. Org.
Lett. 2016, 18, 3118.
(5) (a) Joshi-Pangu, A.; Wang, C.-Y.; Biscoe, M. R. J. Am. Chem. Soc.
2011, 133, 8478. (b) Lohre, C.; Droge, T.; Wang, C.; Glorius, F. Chem. -
Eur. J. 2011, 17, 6052.
(6) (a) Nugent, W. A. Org. Lett. 2002, 4, 2133. (b) Hayashi, T.;
Konishi, M.; Yokota, K.-I.; Kumada, M. Chem. Lett. 1980, 9, 767.
(c) Hintermann, L.; Xiao, L.; Labonne, A. Angew. Chem., Int. Ed. 2008,
47, 8246.
̈
(7) (a) Samann, C.; Dhayalan, V.; Schreiner, P. R.; Knochel, P. Org.
̈
Lett. 2014, 16, 2418. (b) Gurung, S. K.; Thapa, S.; Kafle, A.; Dickie, D.
A.; Giri, R. Org. Lett. 2014, 16, 1264.
(8) (a) Silvi, M.; Sandford, C.; Aggarwal, V. K. J. Am. Chem. Soc. 2017,
139, 5736. (b) Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D.
S.; Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.;
Baran, P. S. Science 2017, 356, eaam7355. (c) Lo, J. C.; Gui, J.; Yabe, Y.;
Pan, C.-M.; Baran, P. S. Nature 2014, 516, 343. (d) Kerchner, H. A.;
Montgomery, J. Org. Lett. 2016, 18, 5760. (e) Atack, T. C.; Cook, S. P. J.
Am. Chem. Soc. 2016, 138, 6139. (f) Kischkewitz, M.; Okamoto, K.;
Muck-Lichtenfeld, C.; Studer, A. Science 2017, 355, 936.
̈
(9) (a) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science 2014, 345,
433. (b) Primer, D. N.; Karakaya, I.; Tellis, J. C.; Molander, G. A. J. Am.
Chem. Soc. 2015, 137, 2195.
(10) Matsui, J. K.; Molander, G. A. Org. Lett. 2017, 19, 950.
(11) Yasu, Y.; Koike, T.; Akita, M. Adv. Synth. Catal. 2012, 354, 3414.
(12) Experiments using Cy-BF3K with oxidative addition complex
(15) result in product despite its enhanced sterics. It is also possible that
the radical addition to NiII could be rate limiting instead; for supporting
(13) (a) Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
(b) Laarhoven, L. J. J.; Mulder, P. J. Phys. Chem. B 1997, 101, 73.
(14) (a) Heitz, D. R.; Tellis, J. C.; Molander, G. A. J. Am. Chem. Soc.
2016, 138, 12715. (b) Shields, B. J.; Doyle, A. G. J. Am. Chem. Soc. 2016,
138, 12719.
(15) One example of tert-butyl radical coupling is known: Zhang, P.;
Le, C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 8084.
(16) Yu, D.-G.; Wang, X.; Zhu, R.-Y.; Luo, S.; Zhang, X.-B.; Wang, B.-
Q.; Wang, L.; Shi, Z.-J. J. Am. Chem. Soc. 2012, 134, 14638.
(17) Liao, L.-Y.; Kong, X.-R.; Duan, X.-F. J. Org. Chem. 2014, 79, 777.
(18) Joshi-Pangu, A.; Ganesh, M.; Biscoe, M. R. Org. Lett. 2011, 13,
1218.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental details and spectral data (PDF)
AUTHOR INFORMATION
Corresponding Author
■
ORCID
́
(19) Gonzalez-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360.
Notes
The authors declare no competing financial interest.
(20) Huang, C.-Y.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 9541.
(21) Wang, X.; Wang, S.; Xue, W.; Gong, H. J. Am. Chem. Soc. 2015,
137, 11562.
(22) Shockley, S. E.; Holder, J. C.; Stoltz, B. M. Org. Process Res. Dev.
2015, 19, 974.
(23) The use of tertiary cyclopropyltrifluoroborates has been achieved:
Harris, M. R.; Li, Q.; Lian, Y.; Xiao, J.; Londregan, A. T. Org. Lett. 2017,
19, 2450.
(24) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481.
(25) Matsui, J. K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8,
3512.
ACKNOWLEDGMENTS
■
We thank NIGMS (R01 GM113878) for support of this
research. We thank the NIH (S10 OD011980) for supporting
the University of Pennsylvania (UPenn) Merck Center for High-
Throughput Experimentation, which funded the equipment used
in screening efforts.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX