C O M M U N I C A T I O N S
Table 2. Asymmetric Cyclization of Aromatic Iminesa,b
the desired product 26 in high yield and with 96% ee (entry 25).
Here again, ligand 16b is a less efficient catalyst but provides an
ee as high as that obtained with diastereomer 16a (entry 28).
The exceptional rates and enantioselectivities observed using the
phosphoramidite ligands6 may be due to their unique binding pro-
perties, which include reduced σ donation to rhodium and enhanced
π acceptor ability compared to phosphines. The enantioselectivities
are presumably due to highly diastereoselective migratory insertion
of the olefin into the Rh-H bond after C-H activation.9
In summary, we have developed a highly enantioselective and
efficient method for the intramolecular imine-directed C-H/olefin
coupling reaction using chiral phosphoramidite ligands. Application
of this methodology to other substrates and to the preparation of
biologically relevant compounds is currently underway.
Acknowledgment. This work was supported by the NIH
GM069559 (to J.A.E.) and the Director and Office of Energy
Research, Office of Basic Energy Sciences, Chemical Sciences
Division, U.S. Department of Energy, under Contract DE-AC03-
76SF00098 (to R.G.B.).
Supporting Information Available: Complete experimental details
and spectral data for all compounds described (PDF, CIF). This material
a Reactions performed using 5 mol % [RhCl(coe)2]2 and 15 mol % ligand
in toluene-d8. b Absolute configurations of (S)-22 and (R)-26 were assigned
by chemical derivatization and X-ray structure determination (see Supporting
Information). The absolute configurations of (S)-18, (S)-20, and (R)-24 were
assigned by analogy. c Yields based on 1H NMR integration relative to 2,6-
dimethoxytoluene internal standard. d Ees determined after hydrolysis of
the imine product using chiral GC or HPLC. e Performed using 10 mol %
ligand.
References
(1) For C-H activation reviews, see: (a) Kakiuchi, F.; Murai, S. Top.
Organomet. Chem. 1999, 3, 47-79. (b) Guari, Y.; Sabo-Etienne, S.;
Chaudret, B. Eur. J. Inorg. Chem. 1999, 1047-1055. (c) Dyker, G. Angew.
Chem., Int. Ed. 1999, 38, 1699-1712. (d) Shilov, A. E.; Shul’pin G. B.
Chem. ReV. 1997, 97, 2879-2932. (e) Arndtsen, B. A.; Bergman, R. G.;
Mobley, A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154-162. (f)
Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV. 2002, 102, 1731-1769.
(g) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34 (8),
633-639.
result suggests that only one ligand is bound to the metal in the
active catalyst.
(2) (a) Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatini, A.; Sonoda, M.;
Chatani, N.; Murai, S. Bull. Chem. Soc. Jpn. 1995, 68, 62-83. (b) Lenges,
C. P.; Brookhart, M. J. Am. Chem. Soc. 1999, 121, 6616-6623. (c) Lim,
Y. G.; Kang, J. B.; Kim, Y. H. J. Chem. Soc., Perkin Trans. 1 1996,
2201-2206. (d) Trost, B. M.; Imi, K.; Davies, I. W. J. Am. Chem. Soc.
1995, 117, 5371-5372. (e) Jordan, R. F.; Taylor, D. F. J. Am. Chem.
Soc. 1989, 111, 778-779. (f) Jun, C. H.; Hong, J. B.; Kim, Y. H.; Chung,
K. Y. Angew. Chem., Int. Ed. 2000, 39, 3440-3441.
(3) (a) For enantioselective aromatic C-H coupling to olefins, see: Mikami,
K.; Hatano, M.; Terada, M. Chem. Lett. 1999, 1, 55-56. (b) For
enantioselective alkene C-H coupling to olefins, see: Fujii, N.; Kakiuchi,
F.; Yamada, A.; Chatani, N.; Murai, S. Chem. Lett. 1997, 425-426. (c)
For atropselective alkene coupling to biaryl compounds, see: Kakiuchi,
F.; Le Gendre, P.; Yamada, A.; Ohtaki, H.; Murai, S. Tetrahedron:
Asymmetry 2000, 11 (13), 2647-2651. (d) For leading references on
enantioselective hydroacylation, see: Taura, Y.; Tanaka, M.; Wu, X.-
M.; Funakoshi, K.; Sakai, K. Tetrahedron 1991, 47 (27), 4879-4888.
Barnhart, R. W.; Wang, X.; Noheda, P.; Bergens, S. H.; Whelan, J.;
Bosnich, B. J. Am. Chem. Soc. 1994, 116, 1821-1830. (e) For a review
of enantioselective C-H activation via metal-carbenoids, see: Davies,
H. M. L.; Beckwith, R. E. J. Chem. ReV. 2003, 103 (8), 2861-2903. (f)
For diastereoselective olefin insertion into chiral Zr complexes, see:
Rodewald, S.; Jordan, R. F. J. Am. Chem. Soc. 1994, 116, 4491-4492.
(4) (a) Thalji, R. K.; Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2001, 123 (39), 9692-9693. (b) Ahrendt, K. A.; Bergman,
R. G.; Ellman, J. A. Org. Lett. 2003, 5 (8), 1301-1303.
(5) (a) For TADDOL-derived ligands, see: Alexakis, A.; Burton, J.; Vastra,
J.; Benhaim, C.; Fournioux, X.; van den Heuvel, A.; Leveˆque, J.-M.; Maze´,
F.; Rosset, S. Eur. J. Org. Chem. 2000, 4011-4027. (b) For binol-derived
ligands, see: Feringa, B. L. Acc. Chem. Res. 2000, 33 (6), 346-353.
(6) Similar results were observed in Rh-catalyzed hydrogenation using
phosphoramidite ligands: van den Berg, M.; Minnaard, A. J.; Haak, R.
M.; Leeman, M.; Schudde, E. P.; Meetsma, A.; Feringa, B. L.; de Vries,
A. H. M.; Malijaars, C. E. P.; Willans, C. E.; Hyett, D.; Boogers, J. A.
F.; Henderickx, H. J. W.; de Vries, J. G. AdV. Synth. Catal. 2003, 345
(1&2), 308-323.
(7) (a) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E.
J. J. Chem. Soc., Perkin Trans. 1 1995, 4, 317. (b) Fleming, I.
Chemtracts: Org. Chem. 1996, 9, 1.
Due to the efficiency of the reaction with ligands 15, 16a, and
16b at 125 °C, we lowered the temperature in hopes of further
enhancing the enantioselectivity (Table 2). Indeed, at 50 °C, the
cyclization of 17 using ligand 16a proceeded with 95% ee and 94%
yield in 9 h (Table 2, entry 4). It is noteworthy that the temperature
is 75 °C lower than that required in our previously optimized study
using Wilkinson’s catalyst.4a Similar increases in ee were obtained
using ligands 15 and 16b, although reaction rates were not as high
(Table 2, entries 2 and 6).
To explore the scope of this enantioselective cyclization reaction,
substrates 19, 21, 23, and 25 were evaluated using the optimal
ligands (Table 2). At 125 °C, complete conversion was observed
within 1 h for each ligand. Upon lowering the temperature to 50
or 75 °C, ligands 16a and 16b consistently provided more efficient
reaction rates than ligand 15, and 16a was slightly more efficient
than 16b. Ligands 16a and 16b also provided higher enantio-
selectivities for all but the sterically encumbered silyl substrate
19 where the least hindered ligand 15 gave the optimal result
(entry 7). Importantly, ketimine 19 is a versatile substrate, as the
SiMe2Ph functionality can be stereospecifically converted into an
OH group using conditions developed by Fleming7 and Tamao8
(eq 2). Styrenyl substrate 21 and indole 23 both cyclized rapidly,
and ligand 16a gave the best conversion and enantioselectivity
(entries 15 and 19, respectively).
(8) Tamao, K. AdV. Silicon Chem. 1996, 3, 1.
(9) This is assuming a mechanism analogous to that proposed by Jun et al.
for the corresponding intermolecular reaction. See ref 2f.
Vinyl ether 25 provides the most efficient reaction. At room
temperature, the reaction proceeded cleanly with ligand 16a, giving
JA0394986
9
J. AM. CHEM. SOC. VOL. 126, NO. 23, 2004 7193