Communication
ChemComm
`
1 (a) J.-L. Reymond, V. S. Fluxa and N. Maillard, Chem. Commun.,
2009, 34; (b) R. N. Dsouza, A. Hennig and W. M. Nau, Chem. – Eur. J.,
2012, 18, 3444; (c) K. Drauz and H. Waldmann, Enzyme Catalysis in
Organic Synthesis, Wiley-VCH, 2008.
reaction in cell biology. Also here, low mM concentrations of the
substrate were sufficient for kinetic monitoring (Fig. S13, ESI†).
Furthermore, pH-titration experiments revealed the highest
enzymatic activity at around pH 5. The maximum is due to
the involvement of a glutamic acid residue as a nucleophile in
the rate-determining step, as has been previously deduced by
using o-nitro-phenyl-b-D-galactopyranoside as a chromogenic
labeled substrate.20
2 (a) A. Hennig, H. Bakirci and W. M. Nau, Nat. Methods, 2007, 4, 629;
(b) G. Ghale, V. Ramalingam, A. R. Urbach and W. M. Nau, J. Am.
Chem. Soc., 2011, 133, 7528; (c) M. Florea and W. M. Nau, Org.
Biomol. Chem., 2010, 8, 1033; (d) W. M. Nau, G. Ghale, A. Hennig,
H. Bakirci and D. M. Bailey, J. Am. Chem. Soc., 2009, 131, 11558;
(e) D.-S. Guo, V. D. Uzunova, X. Su, Y. Liu and W. M. Nau, Chem. Sci.,
2011, 2, 1722.
Associative chemosensing ensembles consisting of the large
macrocycle cucurbit[8]uril and suitable fluorescent dyes provide
a versatile platform to monitor in situ enzymatic reactions with
mM sensitivity for a wide range of substrates carrying aromatic
recognition motifs. We demonstrated the large scope of the
method by employing 12 different enzymes catalyzing redox
and hydrolysis reactions over a broad pH range, including
peroxidases, dehydrogenases, laccases, peptidases, esterases,
phosphatases, penicillinase, and b-galactosidase. All enzymatic
conversions were followed in real time and enzyme-kinetic
parameters are directly accessible. The broad selectivity of the
receptors allows for activity screening of substrates and mediators;
the extension to inhibitor screening is logical, albeit limited to
inhibitors that do not (strongly) bind to the receptor. Important
for sensing, the excitation and the emission can be chosen in the
visible region of the spectrum and can be tuned through modifica-
tion of the dye, keeping the macrocycle unchanged. The use of self-
assembled CB8-dye receptors also enables the identification of
reaction intermediates that would escape detection when observing
the fluorescence/absorption of the substrate or product alone. We
believe that the associative chemosensing strategy can find a wide
range of applications in enzymatic reaction screening, in pharma-
ceutical research, white biotechnology, and also as an economic
analytical tool in biochemical research labs.
3 (a) B. T. Nguyen and E. V. Anslyn, Coord. Chem. Rev., 2006, 250, 3118;
(b) S. L. Wiskur, H. Ait-Haddou, J. J. Lavigne and E. V. Anslyn, Acc.
Chem. Res., 2001, 34, 963.
4 F. Biedermann and W. M. Nau, Angew. Chem., Int. Ed., 2014,
53, 5694.
5 G. R. Bickerton, G. V. Paolini, J. Besnard, S. Muresan and
A. L. Hopkins, Nat. Chem., 2012, 4, 90.
6 (a) E. Masson, X. X. Ling, R. Joseph, L. Kyeremeh-Mensah and
X. Y. Lu, RSC Adv., 2012, 2, 1213; (b) J. Lagona, P. Mukhopadhyay,
S. Chakrabarti and L. Isaacs, Angew. Chem., Int. Ed., 2005, 44, 4844.
7 (a) F. Biedermann, E. Elmalem, I. Ghosh, W. M. Nau and O. A.
Scherman, Angew. Chem., Int. Ed., 2012, 51, 7739; (b) F. Biedermann,
U. Rauwald, M. Cziferszky, K. A. Williams, L. D. Gann, B. Y. Guo,
A. R. Urbach, C. W. Bielawski and O. A. Scherman, Chem. – Eur. J.,
2010, 16, 13716.
8 A. Sadler, V. V. Subrahmanyam and D. Ross, Toxicol. Appl. Pharmacol.,
1988, 93, 62.
9 N. M. Alexander, J. Biol. Chem., 1974, 249, 1946.
10 Z. Jin, Y. Su and Y. Duan, Synth. Met., 2001, 122, 237.
11 H. M. de Hoog, M. Nallani, J. J. L. M. Cornelissen, A. E. Rowan,
R. J. M. Nolte and I. W. C. E. Arends, Org. Biomol. Chem., 2009,
7, 4604.
12 F. van de Velde, F. van Rantwijk and R. A. Sheldon, J. Mol. Catal. B:
Enzym., 1999, 6, 453.
´
13 (a) S. Riva, Trends Biotechnol., 2006, 24, 219; (b) S. Rodrıguez Couto
and J. L. Toca Herrera, Biotechnol. Adv., 2006, 24, 500; (c) O. V.
Morozova, G. P. Shumakovich, S. V. Shleev and Y. I. Yaropolov, Appl.
Biochem. Microbiol., 2007, 43, 523.
14 (a) J. D. Stewart, Curr. Opin. Chem. Biol., 2001, 5, 120; (b) K.
Nakamura and T. Matsuda, Enzyme Catalysis in Organic Synthesis,
Wiley-VCH Verlag GmbH, 2008; (c) C. A. Denard, J. F. Hartwig and
H. Zhao, ACS Catal., 2013, 2856.
15 B. Wiederanders, J. Lasch, H. Kirschke, P. Bohley, S. Ansorge and
H. Hanson, Eur. J. Biochem., 1973, 36, 504.
16 D. S. Auld and B. Holmquist, Biochemistry, 1974, 13, 4355.
17 A. Hennig, D. Roth, T. Enderle and W. M. Nau, ChemBioChem, 2006,
7, 733.
This work was supported by the German Academic Exchange
Service (F.B.) and the Deutsche Forschungsgemeinschaft (DFG
Grant NA-686/5, WMN).
18 T. Panda and B. S. Gowrishankar, Appl. Microbiol. Biotechnol., 2005,
67, 160.
Notes and references
‡ Both ABTS and NHA are only weakly complexed by the chemosensors. 19 D. M. Long, Anal. Biochem., 1997, 247, 389.
Besides, since the mediator is constantly reformed when the substrate 20 (a) Y. Tanaka, A. Kagamiishi, A. Kiuchi and T. Horiuchi, J. Biochem.,
remains, its concentration does not vary, at least at the beginning of the
reaction, which is the most informative part of the kinetic trace.
1975, 77, 241; (b) J. Yuan, M. Martinez-Bilbao and R. E. Huber,
Biochem. J., 1994, 299, 527.
4980 | Chem. Commun., 2015, 51, 4977--4980
This journal is ©The Royal Society of Chemistry 2015