J. H. Choi et al. / Tetrahedron Letters 45 (2004) 4607–4610
4609
€
B. A.; Larsson, A. L. E.; Ray, M. L.; Backvall, J.-E.
J. Am. Chem. Soc. 1999, 121, 1645–1650; (c) Kim, M.-J.;
Ahn, Y.; Park, J. Curr. Opin. Biotechnol. 2002, 13, 578–
Ph
Ph
Ph
O
Ph
1A
Ru
OH
R2
O
OC
ꢂ
587; (d) Pamies, O.; Backvall, J.-E. Chem. Rev. 2003, 103,
3247–3261.
€
OC
R1
R1
1
+
ꢁ
ꢂ
7. Pamies, O.; Ell, A. H.; Samec, J. S. M.; Hermanns, N.;
Ph
Ph
Ph
€
Backvall, J.-E. Tetrahedron Lett. 2002, 43, 4699–4702.
8. Blum, Y.; Shvo, Y. J. Organomet. Chem. 1985, 282, C7–
C10.
9. A typical procedure for dehydrogenation: In a 50 mL flask
equipped with a grease-free high vacuum stopcock, 1
(8.6 mg, 0.0080 mmol) and 1-phenylethanol (0.20 mmol)
were mixed with dry toluene (2 mL) under Ar atmosphere.
The mixture was heated to reflux. The reaction was
checked by GC.
OH
R2
H2
Ph
H
1B
Ru
OC
OC
Scheme 3.
dehydrogenation catalysts such as RuH2(PPh3)4,16
IrH5(iPrP)2,17 IrH2{C6H3-2,6-(CH2P-t-Bu2)2},18 Ru(OC
OCF3)2(CO)(PPh3)2,19 Ru3(CO)12/PPh3,20 11 has several
advantages: stable in the air and easy to handle; active
without additives; active under mild conditions.
10. (a) Zehl, G.; Bischoff, S.; Mizukami, F.; Isutzu, H.;
€
Bartoszek, M.; Jancke, H.; Lucke, B.; Maeda, K. J. Mater.
Chem. 1995, 5, 1893–1897; (b) Lu, Z.; Lindner, E.; Mayer,
H. A. Chem. Rev. 2002, 102, 3543–3578; (c) Kawano, S.;
Tamaru, S.; Fujita, N.; Shinkai, S. Chem. Eur. J. 2004, 10,
343–351.
11. Compound 5: yield: 99%; mp: 115 °C; 1H NMR (CDCl3) d
7.46–7.57 (m, 6H), 7.30–7.37 (m, 3H), 5.39 (s, 1H), 3.78 (d,
J ¼ 11:2 Hz, 2H), 3.65 (d, J ¼ 10:7 Hz, 2H), 1.29 (s, 3H),
0.80 (s, 3H); 13C NMR (CDCl3) d 138.6, 131.8, 131.8,
128.8, 128.5, 126.4, 124.0, 123.4, 101.5, 89.9, 89.5, 77.8,
30.5, 23.3, 22.1; MS (EI): m=z: 292.14(M þ); Anal. Calcd
for C20H20O2: C, 82.16; H, 6.89. Found: C, 82.25; H, 6.81.
A possible pathway for the catalytic dehydrogenation is
proposed in Scheme 3: The diruthenium complex 1 is in
equilibrium with mononuclear species 1A and 1B.21 An
alcohol reacts with the 16-electron species 1A to give the
hydride complex 1B and the corresponding ketone.
Then, 1B loses molecular hydrogen with being coupled
with another 1B to form 1.
1
Compound 6: yield: 66%; mp: 95.5 °C; H NMR (CDCl3)
d 7.92–8.0 (m, 4H), 7.63–7.67 (m, 3H), 7.47–7.53 (m, 2H),
5.44 (s, 1H), 3.78 (d, J ¼ 11:1 Hz, 2H), 3.66 (d,
J ¼ 11:0 Hz, 2H), 1.27 (s, 3H), 0.81 (s, 3H); 13C NMR d
194.7, 194.6, 145.3, 135.1, 133.4, 133.2, 130.2, 130.1, 129.2,
127.1, 100.7, 77.9, 30.5, 23.2, 22.1; FT-IR (KBr)
1667 cmꢀ1; MS (EI): m=z: 324.15 (Mþ); Anal. Calcd for
C20H20O4: C, 74.06; H, 6.21. Found: C, 74.02; H, 6.13.
Compound 7: yield: 82%; mp: 200–202 °C; 1H NMR d
7.10–7.36 (m, 15H), 6.88–6.98 (m, 4H), 5.33 (s, 1H), 3.76
(d, J ¼ 11:2 Hz, 2H), 3.63 (d, J ¼ 10:7 Hz, 2H), 1.28 (s,
3H), 0.79 (s, 3H); 13C NMR d 200.5, 154.7, 154.0, 238.8,
133.7, 133.2, 130.9, 130.8, 129.7, 129.5, 128.7, 128.3, 128.2,
127.7, 127.6, 126.1, 125.9, 125.6, 101.8, 77.9, 23.3, 22.1,
FT-IR (KBr) 1707 cmꢀ1; MS (EI): m=z: 498.31 (Mþ); Anal.
Calcd for C35H30O3: C, 84.31; H, 6.06. Found: C, 84.11;
H, 6.24.
In summary, we synthesized a heterogeneous version of
the versatile Shvo complex through sol–gel process, and
demonstrated that it is a recoverable and reusable cat-
alyst for the efficient dehydrogenation of alcohols.
Acknowledgements
This work was supported financially by the Center for
Integrated Molecular System, the National Laboratory
of Chirotechnology and MOE through the BK21 pro-
ject.
Compound 8: yield: 98%; mp: 143 °C; 1H NMR (CDCl3) d
6.90–7.50 (m, 38H), 5.21 (s, 2H), 3.68 (d, J ¼ 10:9 Hz,
4H), 3.54 (d, J ¼ 11:1 Hz, 4H), 1.22 (s, 6H), 0.75 (s, 6H),
)18.43 (s, 1H); 13C NMR d 201.0, 200.9, 200.8, 200.7,
154.6, 138.1, 132.2, 132.1, 131.4, 131.3, 131.3, 131.2, 130.7,
130.6, 130.4, 130.4, 130.3, 128.1, 128.0, 127.8, 127.0, 125.6,
103.5, 103.1, 103.0, 101.6, 88.1, 88.1, 88.0, 87.9, 77.7, 30.4,
23.2, 22.0; FT-IR (KBr) 2030, 2005, 1977 cmꢀ1; MS
(FAB): m=z: 1314.16 (Mþ+1); Anal. Calcd for
C74H62O10Ru2: C, 67.67; H, 4.76. Found: C, 67.65; H,
4.83.
References and notes
1. (a) Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F.
J. Am. Chem. Soc. 1986, 108, 7400–7402; (b) Jung, H. M.;
Shin, S. T.; Kim, Y. H.; Kim, M.-J.; Park, J. Organomet-
allics 2001, 20, 3370–3372; (c) Jung, H. M.; Choi, J. H.;
Lee, S. O.; Kim, Y. H.; Park, J. H.; Park, J. Organomet-
allics 2002, 21, 5674–5677.
2. Menashe, N.; Shvo, Y. Organometallics 1991, 10, 3885–
3891.
3. Shvo, Y.; Czarkie, D. J. Organomet. Chem. 1986, 315,
C25–C28.
€
4. (a) Almeida, M. L. S.; Beller, M.; Wang, G.-Z.; Backvall,
J.-E. Chem. Eur. J. 1996, 2, 1533–1536; (b) Almeida, M. L.
Compound 9: yield: 98%; mp: 139.5 °C (dec); 1H NMR
(CDCl3) d 9.85 (s, 2H), 7.49–7.56 (m, 4H), 6.93–7.22 (m,
34H), )18.37 (s, 1H); 13C NMR (CDCl3) d 200.8, 200.9,
200.6, 200.5, 191.6, 154.8, 137.7, 135.7, 132.8, 132.1, 131.2,
130.2, 130.0, 129.9, 129.0, 128.5, 128.2, 128.0, 127.4, 127.2,
104.4, 104.3, 101.9, 101.7, 88.7, 88.5, 87.8, 87.6; FT-IR
(KBr) 2035, 2007, 1978 cmꢀ1; MS (FAB): m=z: 1142.17
(Mþ+1); Anal. Calcd for C64H42O8Ru2:C, 67.36; H, 3.71.
Found: C, 67.35; H, 3.73.
Compound 10: yield: 73%; mp: 83 °C; 1H NMR (CDCl3) d
7.20–6.90 (m, 38 H), 4.48 (s, 4H), )18.39 (s, 1H); 13C
NMR (CDCl3) d 201.0, 154.5, 140.7, 132.3, 132.2, 132.1,
131.4, 131.3, 131.2, 131.1, 130.8, 130.4, 130.0, 128.1, 128.0,
ꢀ
S.; Kocovsky, P.; Backvall, J.-E. J. Org. Chem. 1996, 61,
6587–6590; (c) Csjernyik, G.; Ell, A. H.; Fadini, L.; Pugin,
ꢁ
€
ꢁ
€
B.; Backvall, J.-E. J. Org. Chem. 2002, 67, 1657–1662.
ꢁ
5. Ell, A. H.; Samec, J. S. M.; Brasse, C.; Backvall, J.-E.
€
Chem. Commun. 2002, 1144–1145.
6. (a) Larsson, A. L. E.; Persson, B. A.; Backvall, J.-E.
€
Angew. Chem., Int. Ed. 1997, 36, 1122–1211; (b) Persson,