Stephen J. Heffernan et al.
FULL PAPERS
128.5, 127.4, 126.4, 125.1, 117.6, 111.7, 48.2, 25.0, 17.1; HR-
MS (ESI, +ve): m/z=573.2535 (M+H)+, calcd. for
C40H33N2O2: 573.2542.
J. Org. Chem. 2011, 76, 4753–4758; e) T. Arai, M.
Wasai, N. Yokoyama, J. Org. Chem. 2011, 76, 2909–
2912; f) S. M. Bronner, A. E. Goetz, N. K. Garg, J. Am.
Chem. Soc. 2011, 133, 3832–3835; g) H. F. T. Klare, M.
Oestreich, J.-I. Ito, H. Nishiyama, Y. Ohki, K. Tatsumi,
J. Am. Chem. Soc. 2011, 133, 3312–3315; h) R. Hus-
mann, E. Sugiono, S. Mersmann, G. Raabe, M. Ruep-
ing, C. Bolm, Org. Lett. 2011, 13, 1044–1047; i) P. Y.
Choy, C. P. Lau, F. Y. Kwong, J. Org. Chem. 2011, 76,
80–84; j) J. Lv, L. Zhang, Y. Zhou, Z. Nie, S. Luo, J.-P.
Cheng, Angew. Chem. 2011, 123, 6740–6744; J. Lv, L.
Zhang, Y. Zhou, Z. Nie, S. Luo, J.-P. Cheng, Angew.
Chem. 2011, 123, 6740–6744; Angew. Chem. Int. Ed.
2011, 50, 6610–6614.
Acknowledgements
The authors are grateful to ESCOM (MEQ), GSK (SJH,
ACS) and EPSRC and University of Bath for studentship
support (JPT, ACS). We thank Prof. G. Lloyd-Jones for help-
ful discussions.
[9] T. E. Rawson, M. Rꢄth, E. Blackwood, D. Burdick, L.
Corson, J. Dotson, J. Drummond, C. Fields, G. J.
Georges, B. Goller, J. Halladay, T. Hunsaker, T. Klein-
heinz, H.-W. Krell, J. Li, J. Liang, A. Limberg, A.
McNutt, J. Moffat, G. Phillips, Y. Ran, B. Safina, M.
Ultsch, L. Walker, C. Wiesmann, B. Zhang, A. Zhou,
B.-Y. Zhu, P. Rꢄger, A. G. Cochran, J. Med. Chem.
2008, 51, 4465–4475.
[10] A. D. Napper, J. Hixon, T. McDonagh, K. Keavey, J.-F.
Pons Barker, W. T. Yau, P. Amouzegh, A. Flegg, E. Ha-
melin, R. J. Thomas, M. Kates, S. Jones, M. A. Navia,
J. O. Saunders, P. S. DiStefano, R. Curtis, J. Med. Chem.
2005, 48, 8045–8054.
[11] T. Barf, F. Lehmann, K. Hammer, S. Haile, E. Axen, C.
Medina, J. Uppenberg, S. Svensson, L. Rondahl, T.
Lundbꢅck, Bioorg. Med. Chem. Lett. 2009, 19, 1745–
1748.
[12] A. R. Carroll, E. Hyde, J. Smith, R. J. Quinn, G.
Guymer, P. I. Forster, J. Org. Chem. 2005, 70, 1096–
1099.
[13] a) S. W. Pelletier, R. S. Sawhney, N. V. Mody, Heterocy-
cles 1978, 9, 1241–1247; b) S. W. Pelletier, R. S. Sawh-
ney, H. K. Desai, N. V. Mody, J. Nat. Prod. 1980, 43,
395–406; c) T. A. Smitka, R. Bonjouklian, L. Doolin,
N. D. Jones, J. B. Deeter, W. Y. Yoshida, M. R. Prinsep,
R. E. Moore, G. M. L. Patterson, J. Org. Chem. 1992,
57, 857–861; d) U. Huber, R. E. Moore, G. M. L. Patter-
son, J. Nat. Prod. 1998, 61, 1304–1306; e) A. Raveh, S.
Carmeli, J. Nat. Prod. 2007, 70, 196–201; f) S. Mo, A.
Krunic, G. Chlipala, J. Orjala, J. Nat. Prod. 2009, 72,
894–899; g) S. Mo, A. Krunic, B. D. Santarsiero, S. G.
Franzblau, J. Orjala, Phytochemistry 2010, 71, 2116–
2123.
[14] a) J. A. Joule, Indoles. The Monoterpenoid Indole Al-
kaloids, (Ed.: J. E.Saxton), in: The Chemistry of Heter-
ocyclic Compounds, (Eds.: A. Weissberger, E. C.
Taylor), Wiley, New York, 1983; Vol. 25, part 4,
pp 232–239; b) B. Danieli, G. Palmisano, in: The Alka-
loids, (Ed.: A. Brossi), Academic Press, Orlando, Vol.
27, 1986, pp 1–130. For more recent isolations, see:
c) H. Zhang, J.-M. Yue, Helv. Chim. Acta 2005, 88,
2537.
References
[1] a) R. J. Sundberg, in: The Chemistry of Indoles, Aca-
demic Press, New York, 1970; b) R. K. Brown, in: In-
doles, (Ed.: W. J. Houlihan), Wiley-Interscience, New
York, 1972.
[2] For relevant reviews, see: a) K. Higuchi, T. Kawasaki,
Nat. Prod. Rep. 2007, 24, 843; b) M. Somei, F. Yamada,
Nat. Prod. Rep. 2003, 20, 216; c) A. Brancale, R. Silves-
tri, Med. Res. Rev. 2007, 27, 209; d) Y. Ban, Y. Muraka-
mi, Y. Iwasawa, M. Tsuchiya, N. Takano, Med. Res.
Rev. 1988, 8, 231.
[3] For selected recent reports of indole-cased natural
products see: a) W.-S. Yap, C.-Y. Gan, Y.-Y. Low, Y.-M.
Choo, T. Etoh, M. Hayashi, K. Komiyama, T.-S. Kam,
J. Nat. Prod. 2011, 74, 1309–1312; b) R. Finlayson,
A. N. Pearce, M. J. Page, M. Kaiser, M.-L. Bourguet-
Kondracki, J. L. Harper, V. L. Webb, B. R. Copp, J.
Nat. Prod. 2011, 74, 888–892.
[4] As defined as a structural class that can bind to multi-
ple receptors with high affinity, see: D. A. Horton,
G. T. Bourne, M. L. Smythe, Chem. Rev. 2003, 103,
893–930.
[5] For a discussion of indoles as privileged structures, see:
a) F. R. De Sꢃ Alves, E. J. Barreiro, C. A. M. Fraga,
Mini-Rev. Med. Chem. 2009, 9, 982–983; b) K. Bon-
densgaard, M. Ankersen, H. Thøgersen, B. S. Hansen,
B. S. Wulff, R. P. Bywater, J. Med. Chem. 2004, 47, 888–
899.
[6] For an excellent review of indole chemistry, see: M.
Bandini, A. Eicholzer, Angew. Chem. 2009, 121, 9786–
9824; Angew. Chem. Int. Ed. 2009, 48, 9608–9644.
[7] For selected recent examples of de novo indole synthe-
ses, see: a) D. McAusland, S. Seo, D. G. Pintori, J. Fin-
layson, M. F. Greaney, Org. Lett. 2011, 13, 3667–3669;
b) T. Mitamura, K. Iwata, A. Ogawa, J. Org. Chem.
2011, 76, 3880–3887; c) J. Bonnamour, C. Bolm, Org.
Lett. 2011, 13, 2012–2014; d) J. H. Kim, S.-G. Lee, Org.
Lett. 2011, 13, 1350–1353; e) Y. Liu, B. Yao, C.-L.
Deng, R.-Y. Tang, X.-G. Zhang, J.-H. Li, Org. Lett.
2011, 13, 1126–1129.
[8] For selected recent examples of indole elaborations,
see: a) V. Bhat, J. A. MacKay, V. H. Rawal, Org. Lett.
2011, 13, 3214–3217; b) V. Rauniyar, Z. J. Wang, H. E.
Burks, F. D. Toste, J. Am. Chem. Soc. 2011, 133, 8486–
8489; c) F. Kolundzic, M. N. Noshi, M. Tjandra, M. Mo-
vassaghi, S. J. Miller, J. Am. Chem. Soc. 2011, 133,
9104–9111; d) S. K. Guchhait, M. Kashyap, H. Kamble,
[15] a) A. C. Silvanus, S. J. Heffernan, D. J. Liptrot, G.
Kociok-Kçhn, B. I. Andrews, D. R. Carbery, Org. Lett.
2009, 11, 1175; b) for our related work on the double
addition of methylene pronucleophiles to divinyl ke-
tones, see: A. C. Silvanus, B. J. Groombridge, B. I. An-
1158
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2013, 355, 1149 – 1159