.
Angewandte
Communications
[2] B. Hill, N. Kyprianou, Oncol. Rep. 2002, 9, 1151 – 1156.
[3] M. Shelley, C. Harrison, B. Coles, J. Staffurth, T. J. Wilt, M. D.
Mason, Cochrane Database Syst. Rev. 2006, 4, CD005247.
[5] M. Pierce, J. Arango, J. Biol. Chem. 1986, 261, 10772 – 10777.
[6] J. Dennis, S. Laferte, C. Waghorne, M. L. Bretman, R. S. Kerbel,
[7] Z. Kyselova, Y. Mechref, M. M. Al Bataineh, L. E. Dobrolecki,
R. J. Hickey, J. Vinson, C. J. Sweeney, M. V. Novotny, J.
[8] Y. Miura, M. Hato, Y. Shinohara, H. Kuramoto, J. Furukawa, M.
Kurogochi, H. Shimaoka, M. Tada, K. Nakanishi, M. Ozaki, S.
Todo, S.-I. Nishimura, Mol. Cell. Proteomics 2008, 7, 370 – 377.
[10] L. V. Lee, M. L. Mitchell, S.-J. Huang, V. V. Fokin, K. B.
[11] K. Takaya, N. Nagahori, M. Kurogochi, T. Furuike, N. Miura, K.
[12] K. Hosoguchi, T. Maeda, J. Furukawa, Y. Shinohara, H. Hinou,
M. Sekiguchi, H. Togame, H. Takemoto, H. Hondo, S.-I.
[13] T. Pesnot, R. Jørgensen, M. M. Palcic, G. K. Wagner, Nat. Chem.
[14] K. S. Lau, E. A. Partridge, A. Grigorian, C. I. Silvescu, V. N.
[18] M. Sharma, R. J. Bernacki, B. Paul, W. Korytnyk, Carbohydr.
[20] D. D. Marathe, A. Buffone, Jr., E. V. Chandrasekaran, J. Xue,
R. D. Locke, M. Nasirikenari, J. T. Y. Lau, K. L. Matta, S.
[21] M. E. Kaighn, K. S. Narayan, Y. Ohnuki, J. F. Lechner, L. W.
Jones, Invest. Urol. 1979, 17, 16 – 23.
[22] F. Feng, K. Okuyama, K. Niikura, T. Ohta, R. Sadamoto, K.
[23] N. Tomiya, E. Ailor, S. M. Lawrence, M. J. Betenbaugh, Y. C.
[24] S.-I. Nishimura, K. Niikura, M. Kurogochi, T. Matsushita, M.
Fumoto, H. Hinou, R. Kamitani, H. Nakagawa, K. Deguchi, N.
UDP-4F-GlcNAc levels observed after treatment with 2 and 4
(Figure 2). However, notably the hyperbranched N-glyco-
forms are essential for the retention of cancer cell surface
glycoprotein receptors through the formation of galectin-
mediated lattice that greatly influences cancer malignancy
phenomena, such as invasion and metastasis.[5,6] It should be
emphasized that 4F-GlcNAc derivatives are potential
reagents that reduce expression levels of hyperbranched N-
glycans during cancer-cell progression, although confirmation
by using appropriate aggressive cancer cells or such disease
animal models remains to be carried out.
Cell flow cytometry of PC-3 cells treated with 3 (50 mm)
for 48 h showed a marked increase in the cell population in
the G2/M phases from 19.2% (control) to 39.9% with
a concomitant decrease of the cells in the G1 phase from
51.2% (control) to 27.5% (Figure 4A). In contrast, treatment
with 50 mm 5-FU or cisplatin for 48 h showed no significant
differences in the populations of phases G1 (60.4% and
45.5%) and G2/M (16.8% and 22.5%), because 5-FU is
known to be one of the S-phase-specific anticancer agents.
The induction of G2/M cell-cycle arrest was most efficient
after treatment with 3 (50 mm) compared with related sugar
compounds (Figure 4B). This finding clearly indicates that
the hemiacetal group of GlcNAc is essential for the specific
cell-cycle arrest, when other hydroxy groups involving the C-6
position are acetylated. The estrogen metabolite 2-methox-
yestradiol[28] also induces G2/M cell-cycle arrest and apoptosis
in LNCaP, DU145, ALVA-31, and PC-3 cells in vitro, and
inhibits the growth of androgen-independent prostate cancer
in a transgenic mouse model in vivo.[29] To assess the role of 3
in the apoptosis, double staining with annexin V-FITC
(FITC = fluorescein isothiocyanate) and propidium iodide
(PI) was employed for PC-3 cells treated with 3 for 48 h at
concentrations of 50, 100, 200 mm to differentiate early
apoptotic cells and late apoptotic/necrotic cells, respectively
(Figure S8 in the Supporting Information). 66.6% of PC-3
cells treated with 3 (200 mm) underwent apoptosis (9.7% early
apoptosis and 56.9% late apoptosis/necrosis), whereas no
significant changes were observed at concentrations of 3
below 100 mm. These results may motivate us to target the late
cell-cycle stage for therapeutic intervention in androgen-
insensitive diseases,[29] and the novel class of non-natural
GlcNAc derivatives would allow for expanding the available
chemical space to discover promising anti-prostate cancer
drugs.
[25] S.-I. Nishimura, Adv. Carbohydr. Chem. Biochem. 2011, 65, 211 –
264.
[26] M. Amano, M. Yamaguchi, Y. Takegawa, T. Yamashita, M.
Terashima, J. Furukawa, Y. Miura, Y. Shinohara, N. Iwasaki, A.
Minami, S.-I. Nishimura, Mol. Cell. Proteomics 2010, 9, 523 –
537.
[27] T. M. Gloster, W. F. Zandberg, J. E. Heinonen, D. L. Shen, L.
[28] T. Fotsis, Y. Zhang, M. Pepper, H. Adlercreutz, R. Montesano,
[29] L. R. Qadan, C. M. Perez-Stable, C. Anderson, G. DꢀIppolito, A.
Received: December 12, 2011
Revised: January 9, 2012
Published online: February 17, 2012
Keywords: cancer · carbohydrates · glycomics ·
.
hexosamine pathway · N-glycans
[1] American Cancer Society, Cancer Statistic 2011, available at
3390
ꢀ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2012, 51, 3386 –3390