isolation. To improve the overall synthetic efficiency by
eliminating the problematic isolation step, we decided to
sequentially carry out silyl ether formation and the RCM
reaction without isolation of the silyl ether. Toward this end,
we were intrigued by the possibility of employing the
transition metal-catalyzed dehydrogenative condensation
reaction of alcohols with silanes to generate silyl ethers.15
Because molecular hydrogen is the only byproduct in this
reaction, the isolation of the unstable silyl ether 1 might not
be necessary for the subsequent RCM reaction. However,
hydrogenation and hydrosilylation of the unsaturated func-
tionality was of concern for most of the known catalytic
systems.
Scheme 1
We examined various transition metal complexes to
identify a catalyst that would effectively promote the
dehydrogenative condensation but would not catalyze hy-
drogenation or hydrosilylation. Most of the metal complexes
screened ([Rh(COD)Cl]2, RhCl(PPh3)3, Rh(acac)(CO)2, RuCl2-
(PPh)3, [RuCl2(p-cymene)]2, RuCl2(binap), Co2(CO)8, Pd-
(OCOCF3)2, PtCl2, Cu(OTf)2, Ag(OTf)) were effective for
silyl ether formation from alcohols and silanes (Me2PhSiH,
MePh2SiH, Ph2SiH2, Ph3SiH, (PhCC)Me2SiH, Et3SiH, and
t-BuMe2SiH), yet hydrogenation of alkenes and hydrosily-
lation of alkynes were also observed. Only the reactions
performed with [RuCl2(p-cymene)]2 left alkene and alkyne
functionalities intact. On the basis of these observations,
[RuCl2(p-cymene)]2 was further examined for its generality
in the reactions of various alcohols containing unsaturated
functionalities and assorted silanes under solvent-free condi-
tions (Table 1).16 Alcohols with disubstituted (entries 1, 2,
and 7), trisubstituted (entries 3 and 5), and terminal (entry
6) alkenes or alkynes (entries 4, 8, 9, and 10) were reacted
vinylsilane in organic synthesis. This disparity could be due
to the observed detrimental effect of the bulky silyl group,
lowering the reactivity of the silyl-substituted alkyne toward
enyne metathesis.5e,f,6
In our continuing efforts to develop efficient enyne RCM
substrate platforms,7 as well as to broaden the scope of the
enyne metathesis reaction, we became interested in the RCM
reaction of alkynyl silyloxy-tethered enyne 1 (Scheme 1).8,9
We envisioned that the temporary connection of alkenyl
alcohols and alkynylsilanes followed by metathesis would
allow for prompt access to a variety of stereochemically
defined 1,3-dienylvinylsilanes 2, which can be further
manipulated, for example, via a silicon-based cross-coupling
reaction extensively studied by Denmark and co-workers.10
As such, the enyne metathesis converting 1 to 2 constitutes
a powerful synthetic method,11,12 whereby a less regio- and
stereoselective cross-metathesis between alkenes and alkynes
can be performed in a more selective intramolecular fash-
ion.13 Herein we report our development of an efficient
procedure for the consecutive ruthenium-catalyzed synthesis
of alkynylsilyl ethers (1) and their enyne RCM reactions to
generate siloxacycles (2).14
(11) Examples of silyloxy-tethered diene RCM reactions, see: (a) Chang,
S.; Grubbs, R. H. Tetrahedron Lett. 1997, 38, 4757. (b) Evans, P. A.;
Murthy, S. J. Org. Chem. 1998, 63, 6768. (c) Hoye, T. R.; Promo, M. A.
Tetrahedron Lett. 1999, 40, 1429. (d) Shu, S. S.; Cefalo, D. R.; La, D. S.;
Jamieson, J. Y.; Davis, W. M.; Hoveyda, A. H.; Schrock, R. R. J. Am.
Chem. Soc. 1999, 121, 8251. (e) Taylor, R. E.; Engelhardt, F. C.; Schmitt,
M. J.; Yuan, H. J. Am. Chem. Soc. 2001, 123, 2964. (f) Kiely, A. F.;
Jernelius, J. A.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2002,
124, 2868. (g) Van de Weghe, P.; Aoun, D.; Boiteau, J.-G.; Eustache, J.
Org. Lett. 2002, 4, 4105. (h) Evans, P. A.; Cui, J.; Buffone, G. P. Angew.
Chem., Int. Ed. 2003, 42, 1734. (i) Evans, P. A.; Cui, J.; Gharpure, S. J.;
Polosukhin, A.; Zhang, H.-R. J. Am. Chem. Soc. 2003, 125, 14702.
(12) Examples of silyloxy-tethered enyne RCM, see: (a) Semeril, D.;
Cleran, M.; Bruneau, C.; Dixneuf, P. H. AdV. Synth. Catal. 2001, 343, 184.
(b) Yao, Q. Org. Lett. 2001, 3, 2069. (c) Semeril, D.; Cleran, M.; Perez, A.
J.; Bruneau, C.; Dixneuf, P. H. J. Mol. Catal. A. 2002, 190, 9.
(13) For general reviews on silicon tether, see: (a) Bols, M.; Skrydstrup,
T. Chem. ReV. 1995, 95, 1253. (b) Fensterbank, L.; Malacria, M.; Sieburth,
S. McN. Synthesis 1997, 813. (c) Gauthier, D. R., Jr.; Zandi, K. S.; Shea,
K. J. Tetrahedron 1998, 54, 2290.
In the initial attempt for the preparation of alkynylsilyl
ether 1, we recognized its instability toward workup and
(6) Kim, S.-H.; Zeurcher, W. J.; Bowden, N.; Grubbs, R. H. J. Org.
Chem. 1996, 61, 1073.
(7) Hansen, E. C.; Lee, D. J. Am. Chem. Soc. 2003, 125, 9582.
(8) For an alternative method of making alkynylsilyl ethers see: Stork,
G.; Keitz, P. F. Tetrahedron Lett. 1989, 30, 6981.
(9) For the use of alkynylsilyloxy-tethered ene-ynes in other reactions,
see: (a) Petit, M.; Chouraqui, G.; Aubert, C.; Malacria, M. Org. Lett. 2003,
5, 2037. (b) Chouraqui, G.; Petit, M.; Aubert, C.; Malacria, M. Org. Lett.
2004, 6, 1519.
(14) Synthesis of related siloxacycles by ruthenium-catalyzed intramo-
lecular hydrosilylation, see: Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc.
2003, 125, 30.
(15) (a) Ojima, I.; Kogure, T.; Nihonyangi, M.; Kono, H.; Inaba, S. Chem.
Lett. 1973, 501. (b) Luo, X.-L.; Crabtree, R. H. J. Am. Chem. Soc. 1989,
111, 2527. (c) Yamamoto, K.; Takemae, M. Bull. Chem. Soc. Jpn. 1989,
62, 2111. (d) Doyle, M. P.; High, K. G.; Bagheri, V.; Pieters, R. J.; Lewis,
P. J.; Pearson, M. M. J. Org. Chem. 1990, 55, 6082. (e) Maifeld, S. V.;
Miller, R. L.; Lee, D. Tetrahedron Lett. 2002, 43, 6363.
(10) Reviews, see: (a) Denmark, S. E.; Sweis, R. F. Acc. Chem. Res.
2002, 35, 835. (b) Denmark, S. E.; Sweis, R. F. Chem. Pharm. Bull. 2002,
50, 1531. (c) Denmark, S. E.; Ober, M. H. Aldrichim. Acta 2003, 36, 75.
For mechanistic studies, see: (d) Denmark, S. E.; Sweis, R. F.; Wehrli, D.
J. Am. Chem. Soc. 2004, 126, 4865. (e) Denmark, S. E.; Sweis, R. F. J.
Am. Chem. Soc. 2004, 126, 4876.
(16) The ratio of O- to C-silylation is highly dependent on solvents,
see: (a) Zhang, C.; Laine, R. M. J. Am. Chem. Soc. 2000, 122, 6979. (b)
In CH2Cl2, 3-butyn-1-ol (entry 10 in Table 1) undergoes preferential
C-silylation, see: Na, Y.; Chang, S. Org. Lett. 2000, 2, 1887. For a review
of solvent free reactions, see: (c) Tanaka, K.; Toda, F. Chem. ReV. 2000,
100, 1025.
2774
Org. Lett., Vol. 6, No. 16, 2004