Angewandte
Chemie
emission spectrum was recorded. Aliquots (10 mL) of a solution of 37-
mer DNA (0.1 mm), EtBr (1 mm), and NP-PC (3.5 mm) or NP-TCOOH
(3.5 mm, as control) were subsequently added to the solution in the
cuvette. After each addition, a fluorescence spectrum was recorded.
The normalized fluorescence intensities calibrated by respective
controls at a selected wavelength (589 nm) were plotted against the
ratio [NP-PC]/[DNA] (see Supporting Information).
[5] W. Wu, S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp,
J. P. Briand, R. Gennaro, M. Prato, A. Bianco, Angew. Chem.
2005, 117, 6516 – 6520; Angew. Chem. Int. Ed. 2005, 44, 6358 –
6362.
[6] D. Luo, W. M. Saltzman, Nat. Biotechnol. 2000, 18, 893 – 895.
[7] E. Katz, I. Willner, Angew. Chem. 2004, 116, 6166 – 6235; Angew.
Chem. Int. Ed. 2004, 43, 6042 – 6108.
T7 RNA Polymerase: This assay was modified according to that
previously described.[34] The assay was carried out in PBS buffer. To
mediate the reversal of inhibition of transcription, DNA/NP-PC (1:6)
solutions were premixed for 5 min and then irradiated at 350 nm for
different times (0, 0.5, 1, 2, 3, 4, 5, 6, 8, and 10 min) in a Rayonet
photochemical reactor. DNA solutions irradiated for 0 and 10 min
served as controls. T7 RNA polymerase (enzyme/DNA = 5:1,
[DNA] = 0.1 mm) and excess nucleotide triphosphates were then
added to the mixture. The nucleotide triphosphates included 32P-
labeled guanosine 5’-triphosphate (GTP) for isotopic detection. The
enzymatic reaction proceeded for 5 min at 378C before being
quenched with EDTA (15 mm) in formamide (95%). The 20-mer
RNA transcripts were resolved by electrophoresis in a polyacryl-
amide (20%) and urea (7m) gel (Supporting Information) and
visualized and quantified with a Storm 840 phosphorimager to
determine the extent of reaction. Transcription levels obtained in
the absence of NP-PC were set to 100%.
Cell culture: Mouse embryonic fibroblast cell lines were gifts
from Dr. R. Johnson, University of California, San Diego. Cells were
grown in a cell-culture flask in high-glucose Dulbeccoꢀs Modified
Eagle Medium (DMEM; glucose (4.5 gLÀ1)) containing 4-(2-hydroxy-
ethyl)-1-piperazineethanesulfonic acid (HEPES) buffer (pH 7.4,
25 mm) supplemented with fetal bovine serum (FBS; 10%). Cultures
were maintained at 378C under a humidified condition with CO2
(5%).
[8] C. M. Niemeyer, Angew. Chem. 2001, 113, 4254 – 4287; Angew.
Chem. Int. Ed. 2001, 40, 4128 – 4158.
[9] L. Pasquato, P. Pengo, P. Scrimin, J. Mater. Chem. 2004, 14, 3481 –
3487.
[10] A. Verma, V. M. Rotello, Chem. Commun. 2005, 303 – 312.
[11] D. Luo, MRS Bull. 2005, 30, 654 – 658.
[12] W. J. Li, Z. H. Huang, J. A. MacKay, S. Grube, F. C. Szoka, J.
Gene Med. 2005, 7, 67 – 79.
[13] C. A. H. Prata, Y. X. Zhao, P. Barthelemy, Y. G. Li, D. Luo, T. J.
McIntosh, S. J. Lee, M. W. Grinstaff, J. Am. Chem. Soc. 2004,
126, 12196 – 12197.
[14] S. Giri, B. G. Trewyn, M. P. Stellmaker, V. S. Y. Lin, Angew.
Chem. 2005, 117, 5166 – 5172; Angew. Chem. Int. Ed. 2005, 44,
5038 – 5044.
[15] a) D. Ryan, B. A. Parviz, V. Linder, V. Semetey, S. K. Sia, J. Su,
M. Mrksich, G. M. Whitesides, Langmuir 2004, 20, 9080 – 9088;
b) A del Campo, D. Boos, H. W. Spiess, U. Jonas, Angew. Chem.
2005, 117, 4785 – 4791; Angew. Chem. Int. Ed. 2005, 44, 4707 –
4712.
[16] K. N. Plunkett, A. Mohraz, R. T. Haasch, J. A. Lewis, J. S.
Moore, J. Am. Chem. Soc. 2005, 127, 14574 – 14575.
[17] H. Bayley, Nat. Chem. Biol. 2006, 2, 11 – 13.
[18] N. Nishiyama, A. Iriyama, W. D. Jang, K. Miyata, K. Itaka, Y.
Inoue, H. Takahashi, Y. Yanagi, Y. Tamaki, H. Koyama, K.
Kataoka, Nat. Mater. 2005, 4, 934 – 941.
Images: All fluorescence images were obtained with an Olympus
X71 inverted microscope with excitation at 470 nm and emission at
525 nm for the green (fluorescein) channel, and with excitation at
360 nm and emission at 460 nm for the blue (DAPI) channel.
Confocal images were obtained with a Zeiss LSM510 microscope
equipped with a 40 objective lens. An argon laser (488 nm) was
used to provide the excitation for fluorescein-labeled DNA.
Plates (96-well): Mouse embryonic fibroblast cells (12000 cells/
well) were incubated with the NP-PC–F-DNA complex (10:1, [F-
DNA] = 0.2 mm) for 6 h on the culture plates followed by washing
with PBS buffer. Fluorescence-microscopy images were taken
(magnification 20 , exposure time 500 ms) before and after 2 h of
irradation at 365 nm using a hand-held low-power Spectroline ENF-
240C UV lamp.
[19] N. K. Mal, M. Fujiwara, Y. Tanaka, Nature 2003, 421, 350 – 353.
[20] K. Berg, P. K. Selbo, L. Prasmickaite, A. Hogset, Curr. Opin.
Mol. Ther. 2004, 6, 279 – 287.
[21] H. Ando, T. Furuta, R. Y. Tsien, H. Okamoto, Nat. Genet. 2001,
28, 317 – 325.
[22] B. Ghosn, F. R. Haselton, K. R. Gee, W. T. Monroe, Photochem.
Photobiol. 2005, 81, 953 – 959.
[23] L. Krock, A. Heckel, Angew. Chem. 2005, 117, 475 – 477; Angew.
Chem. Int. Ed. 2005, 44, 471 – 473.
[24] S. G. Chaulk, A. M. MacMillan, Nucleic Acids Res. 1998, 26,
3173 – 3178.
[25] A. Heckel, G. Mayer, J. Am. Chem. Soc. 2005, 127, 822 – 823.
[26] J. P. Pellois, T. W. Muir, Angew. Chem. 2005, 117, 5859 – 5863;
Angew. Chem. Int. Ed. 2005, 44, 5713 – 5717.
Glass-bottomed dishes: Mouse embryonic fibroblast cells (3000
cells/dish) were plated overnight, then incubated with the NP-PC–F-
DNA complex (10:1, [F-DNA] = 0.2 mm) for 6 h on the dishes
followed by washing with PBS buffer. After 2 h of irradiation with a
hand-held UV lamp, fluorescence-microscopy images were taken
(magnification 40 , exposure time 1000 ms). The confocal-micro-
scope image was taken by using the parameters noted above.
[27] C. M. McIntosh, E. A. Esposito, A. K. Boal, J. M. Simard, C. T.
Martin, V. M. Rotello, J. Am. Chem. Soc. 2001, 123, 7626 – 7629.
[28] K. K. Sandhu, C. M. McIntosh, J. M. Simard, S. W. Smith, V. M.
Rotello, Bioconjugate Chem. 2002, 13, 3 – 6.
[29] See Supporting Information for details.
[30] D. M. Rothman, M. E. Vazquez, E. M. Vogel, B. Imperiali, J.
Org. Chem. 2003, 68, 6795 – 6798.
[31] R. Hong, N. O. Fischer, A. Verma, C. M. Goodman, T. Emrick,
V. M. Rotello, J. Am. Chem. Soc. 2004, 126, 739 – 743.
[32] J. Olmsted III, D. R. Kearns, Biochemistry 1977, 16, 3647 – 3654.
[33] D. L. Boger, B. E. Fink, S. R. Brunette, W. C. Tse, M. P. Hedrick,
J. Am. Chem. Soc. 2001, 123, 5878 – 5891.
Received: January 18, 2006
Published online: March 30, 2006
Keywords: DNA · gold · nanoparticles · photochemistry ·
.
[34] P. Gong, E. A. Esposito, C. T. Martin, J. Biol. Chem. 2004, 279,
44277 – 44285.
transcription
[35] C. H. Fan, S. Wang, J. W. Hong, G. C. Bazan, K. W. Plaxco, A. J.
Heeger, Proc. Natl. Acad. Sci. USA 2003, 100, 6297 – 6301.
[36] H.-T. Song, J.-S. Choi, Y.-M. Huh, S. Kim, Y.-W. Jun, J.-S. Suh, J.
Cheon, J. Am. Chem. Soc. 2005, 127, 9992 – 9993.
[37] a) O. Zelphati, F. C. Szoka, Pharm. Res. 1996, 13, 1367 – 1372;
b) O. Zelphati, F. C. Szoka, Proc. Natl. Acad. Sci. USA 1996, 93,
11493 – 11498.
[1] W. F. Anderson, Science 1992, 256, 808 – 813.
[2] D. W. Pack, A. S. Hoffman, S. Pun, P. S. Stayton, Nat. Rev. Drug
Discovery 2005, 4, 581 – 593.
[3] U. Boas, P. M. H. Heegaard, Chem. Soc. Rev. 2004, 33, 43 – 63.
[4] A. K. Salem, P. C. Searson, K. W. Leong, Nat. Mater. 2003, 2,
668 – 671.
Angew. Chem. Int. Ed. 2006, 45, 3165 –3169
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3169