M. Miyazaki et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6338–6342
6341
Table 3
two chlorophenyl groups and the i-propyl group of (+)-9c are fitted
with the three MDM2 pockets efficiently.
Chiral separation of compound 9c
O
With regard to the substituent at the C-2 position, it seems that
there is a slight difference between our lead and Nutlin’s. Com-
pound 9c with 2-oxopiperazine as Nutlin-3 kept potent activity,
whilst compound 17 having hydroxyethylpiperazine like Nutlin-2
(4) reduced the activity, which was inconsistent with Nutlin’s
SAR. For dihydroimidazothiazoles, incorporation of basic moiety
at the C-2 position resulted in reduction of activity exemplified
by compounds 17 and 18, while improvement of activity was ob-
served by introducing a weak basic moiety demonstrated by com-
pound 19. Thus, there seems to be more space and opportunity for
derivatization at the C-2 position, and for further improvement of
potency and physicochemical properties as well.
Cl
O
CHIRALCEL OD-H
Hexane-IPA
N
N
N
S
NH
(+)-9c
+ (-)-9c
cis
(enantiomers)
(+/-)-9c
(racemate)
Cl
compd
IC50 (lM)
(+/À)-9c
(+)-9c
0.26
0.16
(À)-9c
11.9
Nutlin-3a
Nutlin-3b
0.09a
13.6a
In conclusion, we discovered novel inhibitors of the p53–MDM2
interaction possessing a dihydroimidazothiazole scaffold. Espe-
cially 2-oxopiperazine (9c) and 2,5-dimethylpiperazine (19) vari-
ants possessed high activity, which was almost equivalent to
Nutlin’s. Moreover, since p53–MDM2 inhibitory activity was dras-
tically influenced by altering substituents at the C-2 or C-3 posi-
tions, further optimization aiming to discover more potent
inhibitors is considered feasible. Investigation and further optimi-
zation are now underway, and the results will be reported in due
course.
a
Lit. data (see Ref. 11).
weaker basic moiety, showed the most potent activity
(IC50 = 0.14 M).
l
These dihydroimidazothiazole derivatives upon which we are
reporting thus far were racemates, and each enantiomer could be
separated by using HPLC with a chiral column. With regard to Nut-
lin, each enantiomer was obtained by optical resolution of the
racemate, and only one of these showed potency.11 Thus we also
separated compound 9c [equal to (+/À)-9c] using chiral HPLC (CHI-
RALCELÒ OD-H, eluant: hexane-IPA), and acquired each enantio-
mer ((+)-9c and (À)-9c)26 (Table 3). Compound (+)-9c possessed
potent activity, in contrast, the IC50 of the other isomer (À)-9c
was found to be 1/85 times weaker. This result suggested the same
tendency as Nutlin’s SAR11; hence the mode of placing the two hal-
ophenyl groups with the dihydroimidazothiazole scaffold was con-
sidered to be almost equivalent to the Nutlin’s imidazole as
expected, although the absolute configurations of (+)-9c and (À)-
9c are yet to be determined. Co-crystal structure analysis of the
dihydroimidazothiazoles and MDM2 has not been conducted yet,
however, the mode of the interaction of our lead would be inter-
preted as follows: From our drug design which referred to the
structural configuration of Nutlins and the result of optical resolu-
tion, it is considered that Nutlin-3a and our active lead (+)-9c make
an interaction to MDM2 protein in the same manner. As shown in
Figure 3, (+)-9c illustrated with an estimated configuration, was
posed by superposition to the co-crystal structure of MDM2/Nut-
lin-2 (PDB code: 1RV1) using docking calculation. In this model,
Acknowledgment
The authors thank the SBDD group in our laboratory for per-
forming the modeling study.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Oliner, J. D.; Kinzler, K. W.; Meltzer, P. S.; George, D. L. Nature 1992, 358, 80.
2. Hollstein, M.; Rice, K.; Greenblatt, M. S.; Soussi, T.; Fuchs, R.; Sørlie, T.; Hovig,
E.; Smith-Sørensen, B.; Montesano, R.; Harris, C. C. Nucleic Acids Res. 1994, 22,
3551.
3. Momand, J.; Jung, D.; Wilczynski, S.; Niland, J. Nucleic Acids Res. 1998, 26, 3453.
4. Eymin, B.; Gazzeri, S.; Brambilla, C.; Brambilla, E. Oncogene 2002, 21, 2750.
5. Haupt, Y.; Maya, R.; Kazaz, A.; Oren, M. Nature 1997, 387, 296.
6. Kubbutat, M. H. G.; Jones, S. N.; Vousden, K. H. Nature 1997, 387, 299.
7. Iwakuma, T.; Lozano, G. Mol. Cancer Res. 2003, 1, 993.
8. Böttger, A.; Böttger, V.; Sparks, A.; Liu, W.-L.; Howard, S. F.; Lane, D. P. Curr. Biol.
1997, 7, 860.
9. Chène, P. Nat. Rev. Cancer 2003, 3, 102.
10. Zhang, Z.; Li, M.; Wang, H.; Agrawal, S.; Zhang, R. Proc. Natl. Acad. Sci. U.S.A.
2003, 100, 11636.
11. Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Kong,
N.; Kammlott, U.; Lukacs, C.; Klein, C.; Fotouhi, N.; Liu, E. A. Science 2004, 303,
844.
12. Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.;
Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. J.
Am. Chem. Soc. 2005, 127, 10130.
13. Yu, S.; Qin, D.; Shangary, S.; Chen, J.; Wang, G.; Ding, K.; McEachern, D.; Qiu, S.;
Nikolovska-Coleska, Z.; Miller, R.; Kang, S.; Yang, D.; Wang, S. J. Med. Chem.
2009, 52, 7970.
14. Hardcastle, I. R.; Ahmed, S. U.; Atkins, H.; Farnie, G.; Golding, B. T.; Griffin, R. J.;
Guyenne, S.; Hutton, C.; Källblad, P.; Kemp, S. J.; Kitching, M. S.; Newell, D. R.;
Norbedo, S.; Northen, J. S.; Reid, R. J.; Saravanan, K.; Willems, H. M. G.; Lunec, J.
J. Med. Chem. 2006, 49, 6209.
15. Allen, J. G.; Bourbeau, M. P.; Wohlhieter, G. E.; Bartberger, M. D.; Michelsen, K.;
Hungate, R.; Gadwood, R. C.; Gatson, R. D.; Evans, B.; Mann, L. W.; Matison, M.
E.; Schneider, S.; Huang, X.; Yu, D.; Andrews, P. S.; Reichelt, A.; Long, A. M.;
Yakowec, P.; Yang, E. Y.; Lee, T. A.; Oliner, J. D. J. Med. Chem. 2009, 52, 7044.
16. Furet, P.; Chène, P.; Pover, A. D.; Valat, T. S.; Lisztwan, J. H.; Kallen, J.; Masuya,
K. Bioorg. Med. Chem. Lett. 2012, 22, 3498.
17. Rew, Y.; Sun, D.; Turiso, F. G.-L. D.; Bartberger, M. D.; Beck, H. P.; Canon, J.;
Chen, A.; Chow, D.; Deignan, J.; Fox, B. M.; Gustin, D.; Huang, X.; Jiang, M.; Jiao,
X.; Jin, L.; Kayser, F.; Kopecky, D. J.; Li, Y.; Lo, M.-C.; Long, A. M.; Michelsen, K.;
Figure 3. Predicted binding model of (+)-9c (estimated configuration) in green
superposed on the MDM2/Nutlin-2 co-crystal structure (PDB code: 1RV1) by
docking calculation. The three substituents of dihydroimidazothiazole scaffold are
fitted to hydrophobic pockets. The i-propyl group has the same role for Phe19 of
p53, which is placed on ethoxy moiety of Nutlin-2 in light red.