10.1002/chem.201904808
Chemistry - A European Journal
COMMUNICATION
decrease of culturable cells for Ru5 or Ru7 at concentrations we
observed the highest yields (12.5 µM), these conditions seem to
offer the best compromise between performance and
biocompatibility. Notably, neither Ru3 nor Ru4 display any
significant toxicity in the tested conditions (Fig. 3E and Fig. S4).
Based on its negligible toxicity and good performance, we
selected Ru3 to demonstrate that our screening platform could
guide the fine-tuning of reaction conditions in the future.
Anticipating that a biocompatible catalyst needs to perform under
varying conditions, we first studied the effect of different co-
solvents on catalyst performance. When comparing yields and
TONs in presence of either acetone, dioxane, ethanol, or DMSO
(all 2.5% (v/v)), Ru3 displayed comparable activities in all four co-
solvents at high concentrations, while DMSO was the preferred
solvent for low catalyst loadings (Fig. 3F and Table S3). Lastly, a
biocompatible catalyst should also function in concert with cells
and retain its activity over an extended period of time. To
determine the extent Ru3 undergoes deactivation in presence of
growing E. coli cultures, we added the catalyst up to 3 hours prior
to addition of the substrate. Notably, Ru3 proved durable and
retained >50% of its initial activity over the 3 hours period (Fig.
3G and Table S4). Combined, these results augur well that
biocompatible catalysts, such as Ru3, can perform in concert with
cells under varying conditions and over extended periods of time,
and thereby, will find future applications in constructing cellular
factories that produce high-value compounds on demand.
Keywords: biocompatible catalysis • non-canonical amino acids
• catalyst screening • uncaging • metabolism
[1]
J. D. Keasling, A. Mendoza, P. S. Baran, Nature 2012, 492, 188–
189.
[2]
[3]
[4]
R. W. Hoffmann, Angew. Chemie Int. Ed. 2013, 52, 123–130.
J. D. Keasling, Science 2010, 330, 1355–1358.
S. Wallace, E. E. Schultz, E. P. Balskus, Curr. Opin. Chem. Biol.
2015, 25, 71–79.
[5]
J. G. Rebelein, T. R. Ward, Curr. Opin. Biotechnol. 2018, 53, 106–
114.
[6]
A. H. Ngo, S. Bose, L. H. Do, Chem. Eur. J. 2018, 24, 10584–
10594.
[7]
Y. Lee, A. Umeano, E. P. Balskus, Angew. Chemie Int. Ed. 2013,
52, 11800–11803.
[8]
G. Sirasani, L. Tong, E. P. Balskus, Angew. Chemie Int. Ed. 2014,
53, 7785–7788.
[9]
S. Wallace, E. P. Balskus, Angew. Chemie Int. Ed. 2016, 55, 6023–
6027.
[10]
[11]
[12]
D. W. Domaille, G. R. Hafenstine, M. A. Greer, A. P. Goodwin, J. N.
Cha, ACS Sustain. Chem. Eng. 2016, 4, 671–675.
R. M. Yusop, A. Unciti-Broceta, E. M. V. Johansson, R. M. Sánchez-
Martín, M. Bradley, Nat. Chem. 2011, 3, 239–243.
J. T. T. Weiss, J. C. C. Dawson, K. G. G. Macleod, W. Rybski, C.
Fraser, C. Torres-Sánchez, E. E. E. Patton, M. Bradley, N. O. O.
Carragher, A. Unciti-Broceta, Nat. Commun. 2014, 5, DOI
10.1038/ncomms4277.
[13]
[14]
A. M. Pérez-López, B. Rubio-Ruiz, V. Sebastián, L. Hamilton, C.
Adam, T. L. Bray, S. Irusta, P. M. Brennan, G. C. Lloyd-Jones, D.
Sieger, et al., Angew. Chemie Int. Ed. 2017, 56, 12548–12552.
J. P. C. P. C. Coverdale, I. Romero-Canelón, C. Sanchez-Cano, G.
J. J. Clarkson, A. Habtemariam, M. Wills, P. J. J. Sadler, Nat.
Chem. 2018, 10, 347–354.
[15]
[16]
[17]
M. Yang, J. Li, P. R. Chen, Chem. Soc. Rev. 2014, 43, 6511–6526.
S. Wallace, E. P. Balskus, Curr. Opin. Biotechnol. 2014, 30, 1–8.
Y. M. M. Wilson, M. Dürrenberger, E. S. S. Nogueira, T. R. R. Ward,
J. Am. Chem. Soc. 2014, 136, 8928–32.
In summary, our work introduces
a versatile and
operationally-simple screening platform to evaluate and optimize
biocompatible small-molecule catalysts. Specifically, the
incorporation of an in-situ synthesized ncAA into GFP through
stop-codon suppression yields a fluorescence readout that
accurately accounts for both the performance and biocompatibility
of a catalyst. Moreover, the screen can be performed in 96-well
format, enabling a rapid and straightforward assessment of
potential catalysts in parallel in small volumes. As long as the
activity of a non-enzymatic transformation can be linked to the
synthesis of a genetically-encodable ncAA,[27–29] the platform
should readily be applicable to evaluate biocompatible catalysts
for other types of transformations. Beyond discovery efforts, we
expect that our method will also allow for the fine-tuning of
reaction conditions in a workflow that is akin to method
development in organic synthesis. While we are only at the
beginning of seamlessly merging small-molecule catalysts with
cellular metabolism, biocompatible catalysts identified via this
screen could ultimately upgrade cellular metabolism and find use
in biotechnological or biomedical applications.
[18]
T. Völker, F. Dempwolff, P. L. L. Graumann, E. Meggers, Angew.
Chemie Int. Ed. 2014, 53, 10536–10540.
[19]
[20]
T. Völker, E. Meggers, ChemBioChem 2017, 18, 1083–1086.
B. Rubio-Ruiz, J. T. T. Weiss, A. Unciti-Broceta, J. Med. Chem.
2016, 59, 9974–9980.
[21]
[22]
[23]
[24]
M. Jeschek, R. Reuter, T. Heinisch, C. Trindler, J. Klehr, S. Panke,
T. R. Ward, Nature 2016, 537, 661–665.
J. Zhao, J. G. Rebelein, H. Mallin, C. Trindler, M. M. Pellizzoni, T. R.
Ward, J. Am. Chem. Soc. 2018, 140, 13171–13175.
H.-T. Hsu, B. M. Trantow, R. M. Waymouth, P. A. Wender,
Bioconjug. Chem. 2016, 27, 376–382.
S. L. Choi, E. Rha, S. J. Lee, H. Kim, K. Kwon, Y. S. Jeong, Y. H.
Rhee, J. J. Song, H. S. Kim, S. G. Lee, ACS Synth. Biol. 2014, 3,
163–171.
[25]
[26]
K. M. Esvelt, J. C. Carlson, D. R. Liu, Nature 2011, 472, 499–503.
Y. Okamoto, R. Kojima, F. Schwizer, E. Bartolami, T. Heinisch, S.
Matile, M. Fussenegger, T. R. Ward, Nat. Commun. 2018, 9, 1–7.
A. Dumas, L. Lercher, C. D. Spicer, B. G. Davis, Chem. Sci. 2015,
6, 50–69.
[27]
[28]
[29]
[30]
D. D. Young, P. G. Schultz, ACS Chem. Biol. 2018, 13, 854−870.
J. W. Chin, Nature 2017, 550, 53–60.
J. G. Rebelein, Y. Cotelle, B. Garabedian, T. R. Ward, ACS Catal.
2019, 9, 4173–4178.
[31]
[32]
J. Li, P. R. Chen, Nat. Chem. Biol. 2016, 12, 129–137.
C. Adam, A. M. M. Pérez-López, L. Hamilton, B. Rubio-Ruiz, T. L. L.
Bray, D. Sieger, P. M. M. Brennan, A. Unciti-Broceta, Chem. Eur. J.
2018, 24, 16783–16790.
[33]
[34]
[35]
[36]
[37]
J. Li, J. Yu, J. Zhao, J. Wang, S. Zheng, S. Lin, L. Chen, M. Yang,
S. Jia, X. Zhang, et al., Nat. Chem. 2014, 6, 352–61.
S. Tanaka, H. Saburi, M. Kitamura, Adv. Synth. Catal. 2006, 348,
375–378.
N. Li, R. K. V. Lim, S. Edwardraja, Q. Lin, J. Am. Chem. Soc. 2011,
133, 15316–15319.
C. Streu, E. Meggers, Angew. Chemie Int. Ed. 2006, 45, 5645–
5648.
D. D. Young, T. S. Young, M. Jahnz, I. Ahmad, G. Spraggon, P. G.
Schultz, Biochemistry 2011, 50, 1894–1900.
Acknowledgements
This work was supported the Netherlands Organisation for
Scientific Research (NWO, Veni grant 722.017.007).
This article is protected by copyright. All rights reserved.