J.R. Hwu et al. / Journal of Organometallic Chemistry 686 (2003) 198Á
/201
201
[9] E.W. Colvin, Silicon in Organic Synthesis (Chapter 3), Butter-
worth, London, 1981, p. 15 (Chapter 3).
the phenyl groups are s donors, their electronic effect
contributes to stabilization of the carboradical by ‘sÁ
hyperconjugation.’ On the other hand, their p orbitals
participating in the ‘pÁdÁp homoconjugation’ may also
/
p
[10] A. Pross, L. Radom, N.V. Riggs, J. Am. Chem. Soc. 102 (1980)
2253.
/
/
[11] A.R. Lyons, M.C.R. Symons, J. Chem. Soc. Faraday Trans. 2 68
(1972) 622.
play a role in stabilization [21].
In conclusion, photolysis of various hindered cis-a-t-
[12] D. Griller, K.U. Ingold, J. Am. Chem. Soc. 96 (1974) 6715.
[13] P.J. Krusic, J.K. Kochi, J. Am. Chem. Soc. 93 (1971) 846.
[14] For recent representative works, see: (a) K. Miura, T. Hondo, S.
Okajima, T. Nakagawa, T. Takahashi, A. Hosomi, J. Org. Chem.
67 (2002) 6082; (b) J.R. Hwu, S.S. Shiao, S.C. Tsay, J. Am. Chem.
Soc. 122 (2000) 5899; (c) L.F. Tietze, U. Beifuss, Angew. Chem.
Int. Ed. Engl. 32 (1993) 131; (d) J.R. Hwu, B.A. Gilbert, J. Am.
Chem. Soc. 113 (1991) 5917; (e) T.K. Sarkar, Synthesis (1990)
butyl-b-organosilylcyclohexanones 2aÁ/d gave products
through the Norrish type I and II cleavages as well as
isomerization. The quantum yields and reaction rate
constants of these reactions are bigger than those from
the corresponding trans isomers 3aÁd. These results
/
indicate that the ‘sÁp hyperconjugation’ plays an
/
1101; (f) L.F. Tietze, J.R. Wunsch, Synthesis (1990) 985.
¨
essential role on efficiency of the photolytic process.
[15] P.A. Wender, J.M. Erhardt, L.J. Letendre, J. Am. Chem. Soc. 103
(1981) 2114.
[16] W.C. Still, J. Org. Chem. 41 (1976) 3063.
[17] P.F. Hudrlik, M.A. Waugh, A.M. Hudrlik, J. Organometal.
Chem. 271 (1984) 69.
Acknowledgements
[18] P. Gosselin, C. Bourdy, S. Mille, A. Perrotin, J. Org. Chem. 64
(1999) 9557.
For financial support, we thank the National Science
Council of Republic of China.
[19] J.O. Morley, M.H. Charlton, J. Phys. Chem. A 102 (1998) 6871.
[20] M.J.S. Dewar, C. Jie, Organometallics 6 (1987) 1486.
[21] J.R. Hwu, B.-L. Chen, L.W. Huang, T.-H. Yang, J. Chem. Soc.
Chem. Commun. (1995) 299.
References
[22] Cyclohexanone 2a (23 mg, 0.10 mmol, one equivalent), anhydrous
granular sodium bicarbonate (17 mg, 0.20 mmol, two equiva-
lents), and methanol (4.0 ml) were added into a 10-ml Pyrex tube,
which was sealed with a septum. After being degassed by argon,
this solution was irradiated with UV light that was filtered
through a Pyrex glass sleeve. The reaction mixture was then
diluted with diethyl ether (50 ml), and the ethereal mixture was
washed with brine (20 ml), dried over MgSO4 (s), filtered, and
concentrated to give a colorless oil. Purification by HPLC
afforded ketone 3a (12 mg, 0.051 mmol) as a light yellow oil in
35% yield, alkenyl aldehyde 4a (0.9 mg, 0.0040 mmol) as a light
yellow oil in 4% yield, ester 5a (7.2 mg, 0.028 mmol) as a yellow
oil in 28% yield, and ketone 6a (2.2 mg, 0.013 mmol) in 13% yield.
[1] For books and reviews, see: (a) C. Chatgilialoglu, D. Crich, M.
Komatsu, I. Ryu, Chem. Rev. 99 (1999) 1991; (b) W.H. Horspool,
D. Armesto, Organic Photochemistry: A Comprehensive Treat-
ment, Ellis Horwood, London, 1992, p. 142 (Chapter 3); (c) J.D.
Coyle (Ed.), Introduction to Organic Photochemistry, Wiley, New
York, 1986, p. 106 (Chapter 4); (d) D.S. Weiss, Organic
Photochemistry, in: A. Padwa (Ed.), vol. 5, Marcel Dekker,
New York, 1981, p. 347; (e) N.J. Turro, Modern Molecular
Photochemistry, Benjamin/Cummings, Menlo Park, 1978, p 526
(Chapter 13).
[2] For books and reviews, see: (a) W.H. Horspool, Specialist
Periodical Report, Photochemistry, in: D. Bryce-Smith, A.
For 3a: 1H-NMR (CDCl3) d ꢀ
C(CH3)3), 1.45Á
2.35 (m, 8H); 13C-NMR (CDCl3, 50 MHz) d ꢀ
1.89 (SiCH3), 23.38, 24.75, 25.52, 29.49 (C(CH3)3), 34.73, 42.60
(C6), 59.80 (C2), 214.85 (CO); IR (neat) 1706 (s, CÄO), 1249 (s,
SiÃCH3), 833 (s, SiÃ
CH3) cmꢀ1; exact mass Calc. for C13H26OSi:
226.1753, Found (70 eV) 226.1754. For 4a: 1H-NMR (CDCl3) d
0.04 (s, 9H, Si(CH3)3), 1.07 (s, 9H, C(CH3)3), 1.50Á2.20 (m, 4H),
2.38 (t, Jꢂ7.3 Hz, 2H, CH2CO), 6.07 (s, 1HÄCH), 9.75 (t, Jꢂ2.0
Hz, 1H, OCH); IR (CHCl3) 2725 (w, HÃCÄO), 1722 (m, CÄO),
1609 (w, CÄC), 1248 (m, SiÃCH3), 836 (m, SiÃ
CH3) cmꢀ1; exact
mass Calc. for C13H26OSi: 226.1753, Found (70 eV) 226.1759. For
5a: 1H-NMR (CDCl3) d ꢀ
0.02 (s, 9H, Si(CH3)3), 0.50Á0.65 (m,
1H), 0.84 (s, 9H, C(CH3)3), 0.95Á1.70 (m, 6H), 2.25 (t, Jꢂ7.3 Hz,
2H, CH2CO), 3.64 (s, 3H, OCH3); 13C-NMR (CDCl3) d ꢀ
2.68
(SiCH3), 20.58, 24.50, 29.55, 31.96, 32.33, 34.50, 43.12, 51.27
(OCH3), 173.82 (CO); IR (CHCl3) 1730 (s, CÄO), 1249 (m, SiÃ
CH3), cmꢀ1; exact mass Calc. for C14H30O2Si:
/
0.06 (s, 9H, Si(CH3)3), 0.94 (s, 9H,
Gilbert (Eds.), vol. 19Á
1988Á91; (b) W.H. Horspool, Specialist Periodical Report,
Photochemistry, in: D. Bryce-Smith, A. Gilbert (Eds.), vol. 1Á
18, Royal Society of Chemistry, London, 1970Á87; (c) R.F.
/
23, Royal Society of Chemistry, London,
/
/
/
/
/
/
/
/
Newton, Photochemistry in Organic Synthesis, in: J.D. Coyle
(Ed.), Royal Society of Chemistry, London, 1986, p. 39 (Chapter
3).
/
/
/
/
[3] J.R. Hwu, B.A. Gilbert, L.C. Lin, B.R. Liaw, J. Chem. Soc.
Chem. Commun. (1990) 161.
/
/
/
/
/
/
[4] N. Auner, R. Walsh, J. Westrup, J. Chem. Soc. Chem. Commun.
(1986) 207.
/
/
[5] M.I.T. Davidson, T.J. Barton, K.J. Hughes, S. Ijadi-Maghsoodi,
A. Revis, G.C. Paul, Organometallics 6 (1987) 644.
[6] T. Okazaki, K.K. Laali, J. Org. Chem. 68 (2003) 1827.
/
/
/
[7] H.-U. Siehl, T. Muller, in: Z. Rappoport, Y. Apeloig (Eds.), The
¨
/
/
Chemistry of Organic Silicon Compounds (Chapter 12), Wiley,
New York, 1998, p. 595 (Chapter 12).
CH3), 834 (m, SiÃ
/
258.2015, Found (70 eV) 258.2017.
[8] A.R. Bassindale, P.G. Taylor, in: S. Patai, Z. Rappoport (Eds.),
The Chemistry of Organic Silicon Compounds (Chapter 14),
Wiley, New York, 1989, p. 893 (Chapter 14).
[23] J.A. Barltrop, J.D. Coyle, J. Chem. Soc. Chem. Commun. (1969)
1081.
[24] N.C. Yang, R.H.-K. Chen, J. Am. Chem. Soc. 93 (1971) 530.