10.1002/anie.202111396
Angewandte Chemie International Edition
COMMUNICATION
The remote arylative substitution was applied to the synthesis
of MPAQ, an antifungal agent isolated from hairy roots of
Sesamum indicum (Scheme 4).[14] The reaction of boronic acid 1l
with 2g at 80 ºC for 4 days provided MPAQ (4lg) in 54% yield with
an excellent linear/branched ratio. This result demonstrates the
utility of the reaction for facile installation of an alkyl group
containing an alkenyl moiety, such as homoprenyl group, onto
aromatic rings.
well as the Asahi Glass Foundation. K.M. is also grateful for
support by the Keio University Doctorate Student Grant-in-Aid
Program from Ushioda Memorial Fund.
Conflict of interest
The authors declare no competing financial interest.
Keywords: palladium • chain walking • arylation • alkenes • β-
acetoxy elimination
[1]
a) I. Franzoni, C. Mazet, Org. Biomol. Chem. 2014, 12, 233-241. b) A.
Vasseur, J. Bruffaerts, I. Marek, Nat. Chem. 2016, 8, 209-219. c) H.
Sommer, F. Julia-Hernandez, R. Martin, I. Marek, ACS Cent. Sci. 2018,
4, 153-165. d) T. Kochi, S. Kanno, F. Kakiuchi, Tetrahedron Lett. 2019,
60, 150938.
[2]
a) P. Roesle, C. J. Dürr, H. M. Möller, L. Cavallo, L. Caporaso, S.
Mecking, J. Am. Chem. Soc. 2012, 134, 17696-17703. b) S. Aspin, A.-S.
Goutierre, P. Larini, R. Jazzar, O. Baudoin, Angew. Chem. 2012, 124,
10966-10969; Angew. Chem. Int. Ed. 2012, 51, 10808-10811. c) E.
Larionov, L. Lin, L. Guénée, C. Mazet, J. Am. Chem. Soc. 2014, 136,
16882-16894. d) L. Lin, C. Romano, C. Mazet., J. Am. Chem. Soc. 2016,
138, 10344-10350. e) D. G. Kohler, S. N. Gockel, J. L. Kennemur, P. J.
Waller, K. L. Hull, Nat. Chem. 2018, 10, 333-340.
Scheme 4. Synthesis of MPAQ by the remote arylative substitution
One of the features of the reactions proceeding via
nondissociative chain walking is that the configurations of the
stereocenters present on the alkyl chain where migration of metal
catalysts are maintained.[2d,3d,15] The reaction of 1a with chiral
alkene substrate (S)-2m (94% ee) provided the corresponding
product (R)-4am with 92% ee (Scheme 5). The high level of
retention of the stereochemitry supports the involvement of the
nondissociative chain walking process for the remote arylative
substitution.
[3]
a) R. C. Larock, W.-Y. Leung, S. Stolz-Dunn, Tetrahedron Lett. 1989, 30,
6629-6632. b) E. W. Werner, T.-S. Mei, A. J. Burckle, M. S. Sigman,
Science 2012, 338, 1455-1458. c) T.-S. Mei, E. W. Werner, A. J. Burckle,
M. S. Sigman, J. Am. Chem. Soc. 2013, 135, 6830-6833. d) T.-S. Mei, H.
H. Patel, M. S. Sigman, Nature 2014, 508, 340-344. e) L. Xu, M. J. Hilton,
X. Zhang, P.-O. Norrby, Y.-D. Wu, M. S. Sigman, O. Wiest, J. Am. Chem.
Soc. 2014, 136, 1960-1967. f) Z.-M. Chen, M. J. Hilton, M. S. Sigman, J.
Am. Chem. Soc. 2016, 138, 11461-11464. g) S. Singh, J. Bruffaerts, A.
Vasseur, I. Marek, Nat. Commun. 2017, 8, 14200. h) J. Liu, Q. Yuan, F.
D. Toste, M. S. Sigman, Nat. Chem. 2019, 11, 710-715.
[4]
a) R. C. Larock, Y. D. Lu, A. C. Bain, C. E. Russell, J. Org. Chem. 1991,
56, 4589-4590. b) R. C. Larock, Y. Wang, Y. Lu, C. E. Russell, J. Org.
Chem. 1994, 59, 8107-8114. c) Y. Wang, X. Dong, R. C. Larock, J. Org.
Chem. 2003, 68, 3090-3098. d) C. Han, Z. Fu, S. Guo, X. Fang, A. Lin,
H. Yao, ACS Catal. 2019, 9, 4196-4202.
[5]
[6]
a) C. Zhang, C. B. Santiago, L. Kou, M. S. Sigman, J. Am. Chem. Soc.
2015, 137, 7290-7293. b) Q. Yuan, M. S. Sigman, J. Am. Chem. Soc.
2018, 140, 6527-6530. c) Q. Yuan, M. B. Prater, M. S. Sigman, Adv.
Synth. Catal. 2020, 362, 326-330.
Scheme 5. Remote arylative substitution of chiral alkene substrate (S)-2m. The
enantiomeric excess of (R)-4am was determined by chiral HPLC analysis after
ozonolysis, reduction, and esterification with 3,5-dinitrobenzoyl chloride.
a) D. Janssen-Müller, B. Sahoo, S. Z. Sun, R. Martin, Isr. J. Chem. 2020,
60, 195-206. b) W.-C. Lee, C.-H. Wang, Y.-H. Lin, W.-H. Shih, T.-G. Ong,
Org. Lett. 2013, 15, 5358-5361. c) J. S. Bair, Y. Schramm, A. G. Sergeev,
E. Clot, O. Eisenstein, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136,
13098-13101. d) I. Buslov, J. Becouse, S. Mazza, M. Montandon-Clerc,
X. Hu, Angew. Chem. 2015, 127, 14731-14734; Angew. Chem., Int. Ed.
2015, 54, 14523-14526. e) Y. He, Y. Cai, S. Zhu, J. Am. Chem. Soc.
2017, 139, 1061-1064. f) F. Julia-Hernandez, T. Moragas, J. Cornella, R.
Martin, Nature 2017, 545, 84-89. g) M. Gaydou, T. Moragas, F. Juliá-
Hernández, R. Martin, J. Am. Chem. Soc. 2017, 139, 12161-12164. h) F.
Chen, K. Chen, Y. Zhang, Y. He, Y.-M. Wang, S. Zhu, J. Am. Chem. Soc.
2017, 139, 13929-13935. i) L. Peng, Y. Li, Y. Li, W. Wang, H. Pang, G.
Yin, ACS Catal. 2018, 8, 310-313. j) W. Wang, C. Ding, Y. Li, Z. Li, Z. Li,
L. Peng, G. Yin, Angew. Chem. 2019, 131, 4660-4664; Angew. Chem.
Int. Ed. 2019, 58, 4612-4616. k) S.-Z. Sun, C. Romano, R. Martin, J. Am.
Chem. Soc. 2019, 141, 16197-16201. l) S. Guven, G. Kundu, A. Weßels,
J. S. Ward, K. Rissanen, F. Schoenebeck, J. Am. Chem. Soc. 2021, 143,
8375-8380.
In summary, we developed the palladium-catalyzed remote
arylative substitution of alkenes bearing an acetoxy group. The
reaction with various alkenes possessing a distant acetoxy group
provided arylation products having an alkene moiety at the remote
position. A variety of arylboronic acids were also applicable to this
reaction. Future studies utilizing this “addition/chain
walking/elimination” strategy to other reactions are in progress.
Acknowledgements
This work was supported, in part, by JSPS KAKENHI Grant
Numbers, JP18H01985 (Grant-in-Aid for Scientific Research (B)),
and JP15KT0069 (Grant-in-Aid for Scientific Research (B)) as
[7]
a) N. Chinkov, S. Majumbar, I. Marek, J. Am. Chem. Soc. 2003, 125,
13258-13264. b) N. Chinkov, A. Levin, I. Marek, Angew. Chem. 2006,
This article is protected by copyright. All rights reserved.