March 2014
A New Route to N-Alkylation of Benzimidazole and Benzotriazole
355
61.7, 27.8, 11.2 ppm. ESI HRMS: Calcd for C16H16N2 [M+ H]+:
237.1386, found: 237.1378.
under thermal condition in the presence of base through
the formation of the diazo compound [6a]. Subsequently,
the diazo compound releases the nitrogen and forms the
Cu carbene complex in the presence of copper [8a,7a].
Finally, the insertion reaction of the copper carbene into
N—H bond of benzimidazole happens [5,10,13,14,15],
which gives rise to the corresponding N-alkylated product.
Acknowledgments. We are grateful to the project sponsored
by the Scientific Research Foundation for the State Education
Ministry (No. 107108) and the Project of National Science
Foundation of People’s Republic of China (No. J0730425).
We sincerely thank Miss Nan Nan for helping prepare the
manuscript.
CONCLUSION
In conclusion, the one-pot, two-step sequence reaction
of benzimidazole and benzotriazole with the carbonyl
compounds represents a general, functional-group tolerate,
operationally simple, and efficient access to N-alkylation.
This transformation, catalyzed by low amount of copper
powder (2 mol%), provides the corresponding N-alkylated
products in good to excellent yields, which render the
potential industrial application possible because of the
cheap and low-toxic catalyst. It is believable that the
reaction system could be a better alternative to existing
methodologies [4,10] for the N-alkylation of benzimidazoles
and benzotriazoles.
REFERENCES AND NOTES
[1] (a) Bai, Y.; Lu, J.; Shi, Z.; Yang, B. Synlett 2001, 4, 544; (b)
Hasegawa, E.; Yoneoka, A.; Suzuki, K.; Kato, T.; Kitazume, T.; Yangi,
K. Tetrahedron 1999, 55, 12957.
[2] (a) Katritzky, A. R.; Rachwal, S. Chem Rev 2010, 110, 1564;
(b) Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. Chem Rev 1998,
98, 409; (c) Bouwman, E.; Driessen, W. L.; Reedjik, J. Coord Chem Rev
1990, 104, 143; (d) Pujar M. A.; Bharamgoudar, T. D. Transition Met.
Chem. 1988, 13, 423.
[3] (a) Erhardt, P. W. J. Med Chem 1987, 30, 231; (b) Gravalt, G.
L.; Baguley, B. C.; Wilson, W. R.; Denny, W. A. J. Med Chem 1994, 37,
4338; (c) Soderlind, K.-J.; Gorodetsky, B.; Singh, A. K.; Bachur, N.;
Miller, G. G.; Loun, J. W. Anti-Cancer Drug Des. 1999, 14, 19;
(d) Kim, J. B.; Gatto, B.; Yu, C.; Liu, A.; Liu, L. F.; Lavoie, E. J. J.
Med Chem 1996, 39, 992.
[4] For examples, see: (a) Al-Azmi, A.; George, P.; El-Dusouqui,
O. M. E. J. Heterocycl. Chem. 2007, 44, 515; (b) Begtrup, M.; Larsen, P.
Acta Chem Scand 1990, 44, 1050.
[5] Fulton, J. R.; Aggarwal, V. K.; de Vicente, J. Eur J Org Chem
2005, 8, 1479.
EXPERIMENTAL
[6] (a) Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C.
Nat Chem 2009, 1, 433; (b) Barluenga, J.; Tomás-Gamasa, M.; Aznar,
F.; Valdés, C. Angew Chem Int Ed 2010, 49, 4993; (c) Barluenga, J.;
Tomás-Gamasa, M.; Aznar, F.; Valdés, C. Eur J Org Chem 2011, 8,
1520; (d) Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.; Valdés, C. Adv
Synth Catal 2010, 352, 3235; (e) Barluenga, J.; Tomás-Gamasa, M.; Mor-
iel, P.; Aznar, F.; Valdés, C. Chem Eur J 2008, 14, 4792; (f) Barluenga, J.;
Moriel, P.; Valdés, C.; Aznar, F. Angew Chem Int Ed 2007, 46, 5587; (g)
Barluenga, J.; Florentino, L.; Aznar, F.; Valdés, C. Org Lett 2011, 13,
510; (h) Barluenga, J.; Escribano, M.; Aznar, F.; Valdés, C. Angew Chem
Int Ed 2010, 49, 6856; (i) Barluenga, J.; Tomás-Gamasa, M.; Aznar, F.;
Valdés, C. Chem Eur J 2010, 16, 12801; (j) Barluenga, J.; Escribano,
M.; Moriel, P.; Aznar, F.; Valdés, C. Chem Eur J 2009, 15, 13291; (k)
Barluenga, J.; Valdés, C. Angew Chem Int Ed 2011, 50, 7486.
[7] (a) Zhao, X.; Wu, G.; Zhang, Y.; Wang, J. J. Am Chem Soc
2011, 133, 3296; (b) Xiao, Q.; Ma, J.; Yang, Y.; Zhang, Y.; Wang, J.
Org Lett 2009, 11, 4732; (c) Zhao, X.; Jing, J.; Lu, K.; Zhang, Y.; Wang,
J. Chem Commun 2010, 46, 1724; (d) Xiao, Q.; Xia, Y.; Li, H.; Zhang,
Y.; Wang, J. Angew Chem Int Ed 2011, 50, 1114; (e) Zhou, L.; Shi, Y.;
Xiao, Q.; Liu, Y.; Ye, F.; Zhang, Y.; Wang, J. Org Lett 2011, 13, 968;
(f) Ye, F.; Shi, Y.; Zhou, L.; Xiao, Q.; Zhang, Y.; Wang, J. Org Lett
2011, 13, 5020.
General procedure for Cu powder-catalyzed one-pot
fashion N-alkylation of benzimidazole with various carbonyl
compounds.
Firstly, a solution of corresponding carbonyl
compound (1.0 mmol) and tosylhydrazide (1.0 mmol) in 3 mL
dioxane was stirred at 60ꢀC for 2h. After that, benzimidazole
(1.3 mmol), Cu powder (2.0 mol%), KOtBu (2.0 equiv), and
DMSO (3 mL) were added to the aforementioned solution. The
mixture was stirred at 60ꢀC for another 6h. When the reaction
was completed, the crude reaction mixture was allowed to reach
RT, and then the mixture was diluted with ethyl acetate and
filtered. The filtrate was extracted twice with water. After that,
the combined organic layer was washed with brine, then dried
over Na2SO4, and filtered. Finally, the solvent was removed
under reduced pressure to obtain the crude product, which was
further purified by silica gel chromatography (petroleum/ethyl
acetate = 1/1 as eluent) to yield corresponding product. The
1
identity and purity of the products was confirmed by H-NMR
and 13C-NMR spectroscopic analysis.
1-(1-Phenylethyl)-1H-benzo[d]imidazole (3a).
1H-NMR
[8] (a) Tréguier, B.; Hamze, A.; Provot, O.; Brion, J.-D.;
Alami, M. Tetrahedron Lett 2009, 50, 6549; (b) Rasolofonjatovo, E.;
Tréguier, B.; Provot, O.; Hamze, A.; Morvan, E.; Brion, J.-D.; Alami,
M. Tetrahedron Lett 2011, 52, 1036; (c) Brachet, E.; Hamze, A.; Peyrat,
J.-F.; Brion, J.; Alami, M. Org Lett 2010, 12, 4042.
[9] (a) Zhang, J.; Chan, P. W. H.; Che, C.-M. Tetrahedron Lett
2003, 44, 8733; (b) Cheung, W.-H.; Zheng, S.-L.; Yu, W.-Y.; Zhou, G.-C.;
Che, C.-M. Org Lett 2003, 5, 2535; (c) Feng, X.-W.; Wang, J.; Zhang, J.;
Yang, J.; Wang, N.; Yu, X.-Q. Org Lett 2010, 12, 4408; (d) Ding, Q.; Cao,
B.; Yuan, J.; Liu, X.; Peng, Y. Org Biomol Chem 2011, 9, 748; (e) Chen,
Z.; Yu, X.; Wu, J. Chem Commun 2010, 46, 6356; (f) E. Cuevas-Yañez,
E. Serrano, J. M. Huerta, G. Muchowskib, J. M. Cruz-Almanza, R
Tetrahedron 2004, 60, 9391; (g) Shao, Z.; Zhang, H. Chem Soc Rev
2012, 41, 560.
(400 MHz, CDCl3): d 8.10 (s, 1H), 7.83–7.81 (d, J = 8 Hz, 1H),
7.35–7.18 (m, 8H), 5.65–5.59 (q, J = 7.2 Hz, 1H), 2.01–1.99
(d, J = 7.2 Hz, 3H) ppm. 13C-NMR (100 MHz, CDCl3): 140.6,
128.9, 128.0, 125.9, 122.8, 122.2, 120.3, 110.6, 55.2, 21.5 ppm.
MS: m/z (%) = 223 (M+, 100), 119 (3). IR 2932, 1611, 1513,
1248, 1030, 834, 746 cmÀ1. ESI HRMS: Calcd for C15H14N2
[M + H]+: 223.1230, found: 223.1226.
1-(1-Phenylpropyl)-1H-benzo[d]imidazole (3b).
1H-NMR
(300 MHz, CDCl3): d 8.15 (s, 1H), 7.83–7.80 (d, J = 7.5 Hz,
1H), 7.36–7.18 (m, 8H), 5.33–5.28 (t, J = 7.5 Hz, 1H), 2.48–2.35
(m, 2H), 1.02–0.97 (t, J = 7.2 Hz, 3H) ppm. 13C-NMR (75 MHz,
CDCl3): 139.4, 128.8, 128.0, 126.4, 122.8, 122.2, 120.2, 110.5,
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet