Chemistry Letters Vol.32, No.12 (2003)
1125
a sulfur–carbon bond. This system is quite useful and versatile
for the synthesis of fullerodendrimer, although formation of ful-
lerodendrimer via photoreaction is quite rare. Aggregation of
fullerodendrimer 1b on mica surface might be important for
nano-science. Further work is in progress to explore the applica-
tions and advantages of fullerodendrimer formed by the photoin-
duced dithiolation reaction.
This work was partly supported by Research Foundation for
Materials Science, Saneyoshi Scholarship Foundation, and the
Ministry of Education, Culture, Sports, Science and Technology,
Japan (15750036).
Figure 1. Negative-ion LD-TOF mass spectrum of fullerodendrimer
1b.
References and Notes
the 1:1 adduct on the 6,6-ring junction.12 The LD-TOF mass
spectrum of 1b by the use of negative-ion mode showed a molec-
ular ion peak at m=z: 2256.62 (1b, C130H110N12O22S2 requires
m=z: 2256.47), together with peaks at m=z: 1536.41 ([M À
C60]À) and 1488.77 ([M À 2b/2]À) (Figure 1). The fulleroden-
drimer 1b has a more negative oxidation potential (Eo1x ¼ 0:77 V
vs SCE) than C60 (Eo1x ¼ 1:12 V vs SCE) by 0.35 V, although its
1
a) A. Hirsch, Top. Curr. Chem., 199, 1 (1999). b) J. F. Nierengarten, T.
Habicher, R. Kessinger, F. Cardullo, F. Diederich, V. Gramlich, J. P.
Gisselbrecht, C. Boudon, and M. Gross, Helv. Chim. Acta, 80, 2238 (1997).
c) F. Diederich and C. Thilgen, Science, 271, 317 (1996).
2
3
A. Hirsch and O. Vostrowsky, Top. Curr. Chem., 217, 51 (2001) and
references therein.
a) Y. Takaguchi, T. Tajima, K. Ohta, J. Motoyoshiya, H. Aoyama, T.
Wakahara, T. Akasaka, M. Fujitsuka, and O. Ito, Angew. Chem., Int. Ed.,
41, 817 (2002). b) Y. Takaguchi, Y. Sako, Y. Yanagimoto, S. Tsuboi, J.
Motoyoshiya, H. Aoyama, T. Wakahara, and T. Akasaka, Tetrahedron Lett.,
44, 5777 (2003).
1
reduction potential (Ered ¼ À1:10 V vs SCE) was similar to that
of pristine C60.13
It is notable that the fullerodendrimer 1b is readily soluble in
acidic water (more than 30mg/mL at pH 1.50).
4
5
6
C. J. Hawker, K. L. Wooley, and J. M. J. Frechet, J. Chem. Soc., Chem.
Commun., 1994, 925.
For a recent review, see: T. Akasaka, T. Wakahara, S. Nagase, and K.
Kobayashi, J. Synth. Org. Chem., Jpn., 58, 1066 (2000).
I. S. Neretin, K. A. Lyssenko, M. Y. Antipin, Y. L. Slovokhotov, O. V.
Boltalina, P. A. Troshin, A. Y. Lukonin, L. N. Sidorov, and R. Taylor, Angew.
Chem., Int. Ed., 39, 3273 (2000).
To obtain information on the state of aggregation of the den-
drimer, we examined the chloroform solution of 1b on mica sur-
face by atomic force microscopy (AFM) (Nanoscope III, Digital
Instruments, Santa Barbara. CA). A chloroform solution of 1b
(1.5 mM) was deposited on freshly cleaved mica under air, and
dried with nitrogen stream. The sample was then observed by
AFM in the tapping mode of operation with single crystal con-
ventional Si tip. The AFM image showed flat round-shaped ob-
jects corresponding to the aggregated 1b. The size of the aggre-
gates ranges from 100 to 220 nm in diameter and from 3 to 5 nm
in height. A typical object in Figure 2 measures 200 nm in diam-
eter and 3.7 nm in height. The aggregation of fullerodendrimer
1b in chloroform was also observed by dynamic light scattering
(DLS; 25 ꢁC, He–Ne laser). The particle size of the aggregate
was 45:9 Æ 0:2 nm in chloroform solution (1.5 mM). An analo-
gous result has been observed by Nakamura et al.14
7
8
a) M. Ohno, S. Kojima, Y. Shirakawa, and S. Eguchi, Tetrahedron Lett., 36,
6899 (1995). b) M. M. Alam, M. Sato, A. Watanabe, T. Akasaka, and O.
Ito, J. Phys. Chem. A, 102, 7447 (1998).
a) Y. Takaguchi, K. Saito, S. Suzuki, K. Hamada, K. Ohta, J. Motoyoshiya, and
H. Aoyama, Bull. Chem. Soc. Jpn., 75, 1347 (2002). b) D. A. Tomalia, B.
Huang, D. R. Swanson, H. M. Brothers, II, and J. W. Klimash, Tetrahedron
Lett., 59, 3799 (2003).
9
Selected data for 2a: 1H NMR (CDCl3) ꢁ 2.43 (t, J ¼ 6:4 Hz, 8H), 2.62 (t,
J ¼ 5:6 Hz, 4H), 2.75 (t, J ¼ 6:4 Hz, 8H), 3.53 (s, 12H), 3.55 (q, J ¼
5:6 Hz, 4H), 7.20(t, J ¼ 5:6 Hz, 2H), 7.51 (d, J ¼ 8:8 Hz, 4H), 7.84 (d,
J ¼ 8:8 Hz, 4H); 13C NMR (CDCl3) ꢁ 32.5, 37.2, 48.7, 51.4, 52.7, 126.4,
128.0, 133.5, 139.9, 166.2, 173.0. For 2b: 1H NMR (CDCl3) ꢁ 2.33–2.42
(m, 32H), 2.63–2.68 (m, 20H), 2.79 (t, J ¼ 6:4 Hz, 8H), 3.18 (q, J ¼ 5:5 Hz,
8H), 3.55 (q, J ¼ 5:3 Hz, 4H), 3.63 (s, 24H), 6.83 (t, J ¼ 5:5 Hz, 4H), 7.49
(d, J ¼ 8:8 Hz, 4H), 7.83 (t, J ¼ 5:3 Hz, 2H), 7.91 (d, J ¼ 8:8 Hz, 4H); 13C
NMR (CDCl3) ꢁ 32.6, 33.7, 37.0, 37.6, 49.1, 49.2, 51.5, 52.5, 52.8, 126.1,
128.2, 133.6, 139.8, 166.1, 172.2, 172.9; MALDI-TOFMS for
C
70H110N12O22S2: m=z Calcd. 1536.83 [MHþ]; Found, 1536.07.
The results described herein show a new class of dendrimer
of C60, which attached to poly(amidoamine) dendron wedge via
10a) A. Ogawa and N. Sonoda, J. Synth. Org. Chem., Jpn., 54, 894 (1996). b) A.
Ogawa, H. Tanaka, H. Yokoyama, R. Obayashi, K. Yokoyama, and N.
Sonoda, J. Org. Chem., 57, 111 (1992). c) A. Ogawa and N. Sonoda,
Phosphorus, Sulfur Silicon Relat. Elem., 95, 331 (1994).
11 Selected data for 1a: 1H NMR (CDCl3) ꢁ 2.42–2.46 (m, 8H), 2.62–2.65 (m,
4H), 2.71–2.78 (m, 8H), 3.53 (s, 12H), 3.55 (q, J ¼ 5:6 Hz, 4H), 7.12–7.14
(m, 2H), 7.30(d, J ¼ 8:8 Hz, 4H), 7.49 (d, J ¼ 8:8 Hz, 4H); 13C NMR
(CDCl3) ꢁ 32.5, 37.2, 48.7, 51.4, 52.7, 61.7, 125.9, 126.5, 127.2, 127.5,
128.0, 128.7, 129.5, 129.7, 130.0, 131.5, 132.3, 132.6, 133.5, 133.9, 134.4,
135.6, 139.2, 139.8, 140.0, 166.2, 173.0; LD-TOFMS for C94H46N4O10S2:
m=z Calcd. 1455.49 [MÀ]; Found, 1455.94. For 1b: 1H NMR (CDCl3) ꢁ
2.38–2.44 (m, 32H), 2.66–2.69 (m, 20H), 2.80–2.82 (m, 8H), 3.19–3.20 (m,
8H), 3.49–3.52 (m, 4H), 3.64 (s, 24H), 6.77–6.83 (m, 4H), 7.43 (d,
J ¼ 7:2 Hz, 4H), 7.75–7.77 (m, 2H), 7.85 (d, J ¼ 7:2 Hz, 4H); 13C NMR
(CDCl3) ꢁ 32.6, 33.7, 37.0, 37.6, 49.1, 49.2, 51.5, 52.5, 52.8, 58.4, 126.1,
126.2, 127.2, 127.7, 128.0, 128.3, 129.1, 129.5, 129.9, 130.5, 131.5, 132.3,
132.6, 133.7, 133.9, 134.4, 135.6, 139.2, 139.9, 166.2, 172.3, 173.0; LD-
TOFMS for C130H110N12O22S2: m=z Calcd. 2256.47 [MÀ]; Found, 2256.62.
12 J. A. Schlueter, J. M. Seaman, S. Taha, H. Cohen, K. R. Lykke, H. H. Wang,
and J. M. Williams, Chem. Commun., 1993, 972.
13 Cyclic voltammogram of fullerodendrimer 1b shows irreversible redox
behavior. Then, 1b is not electrochemically stable.
0
2 µm
14 a) M. Sawamura, N. Nagahama, M. Toganoh, U. E. Hackler, H. Isobe, E.
Nakamura, S.-Q. Zhou, and B. Chu, Chem. Lett., 2000, 1098. b) S. Zhou, C.
Burger, B. Chu, M. Sawamura, N. Nagahama, M. Toganoh, U. E. Hackler,
H. Isobe, and E. Nakamura, Science, 291, 1944 (2001).
Figure 2. Atomic force microscope image of 1b on mica and height
profile corresponding to the line in the image.
Published on the web (Advance View) November 10, 2003; DOI 10.1246/cl.2003.1124