Silicon-Tethered Porphyrins
electroactive surface, particularly large-wafer silicon, and
(2) a robust linkage that can withstand large numbers
of redox cycles. A number of methods have been devel-
oped for covalent attachment of organic molecules to
silicon surfaces.7 For example, the reaction of Si (hydrogen-
passivated or chlorine-modified) with an alcohol affords
the self-assembled film containing RO-Si linkages.
However, the reaction requires use of neat liquids or a
very high concentration of the molecules to be attached.8-11
Porphyrins generally have low solubility in organic
solutions, with concentrations of ∼50 mM being a typical
upper limit. The method we previously developed for
attaching porphyrins to Si platforms (either hydrogen-
passivated or iodine-modified) involved depositing a drop
of solution containing the porphyrin compound in a high-
boiling solvent (e.g., benzonitrile, bp 191 °C) onto a
photolithographically patterned micrometer-size Si elec-
trode, followed by heating at ∼170 °C for several hours,
during which time additional solvent was added to the
sample area.6 This method afforded attachment of por-
phyrins6 (and ferrocenes3,6) to Si(100) via tethers that are
terminated with OH, SAc, and SeAc groups, yielding
RO-Si, RS-Si, and RSe-Si linkages (the acetyl protect-
ing group is cleaved upon attachment) where R repre-
sents the tether and accompanying redox-active unit.12
This procedure produced high quality monolayers useful
for academic studies but was unsuited for reproducible
fabrication of memory chips on large Si wafers. In
addition, in the past few years it has become apparent
that more stable monolayers are generally obtained with
carbosilane linkages (RC-Si) than alkoxysilane linkages
(RO-Si). Achieving a stable linkage of the redox-active
unit to the Si surface is essential because as many as
1015 cycles may be encountered over an operational
lifetime in a memory chip.13
employed for attachment to Si via thermal,15,20,21 free
radical,15 photochemical (UV),22-24 and Lewis acid medi-
ated reactions.25,26 Alkynes have been less studied but
generally appear to react via the same methods as for
alkenes, including thermal,27 free radical,15 photochemi-
cal,28 Lewis acid mediated,26,28 and electrografting pro-
cesses.28 Of these, the thermal methods (typically ∼100
°C) with alkenes or alkynes appeared to be most ap-
plicable for attaching porphyrinic compounds to large-
scale Si wafers. However, the requirement for use of very
high concentrations of reactants appeared to exclude such
an application.
The success of our thermal attachment method with
alcohol tethers (both for porphyrins and other types of
molecules)6 combined with the fact that porphyrins are
known to be stable at very high temperatures (400 °C
under inert atmosphere conditions)4 where other types
of organic molecules decompose prompted us to explore
very-high-temperature processing strategies. We devel-
oped two high-temperature processing conditions that
enable attachment to Si(100) of porphyrins containing a
wide variety of functional groups. The conditions entail
direct deposition of the sample onto the Si substrate or
sublimation onto the Si substrate. The porphyrins ex-
amined initially were those that bear functional groups
known to attach to silicon, such as the benzyl alcohol
porphyrin Zn 1.6 We subsequently found that a number
of hydrocarbon tethers also afford attachment. The latter
finding prompted the synthesis of a systematic set of
porphyrins bearing a wide variety of hydrocarbon tethers.
A number of methods have been developed for deriva-
tizing silicon surfaces via carbosilane linkages.7 The
methods include pyrolysis of diacyl peroxides,14,15 reaction
of Grignard reagents (with halogenated silicon sur-
faces),16 and electrografting of aryldiazonium salts,17 alkyl
halides,18 or Grignard reagents.19 Alkenes have been
In this paper, we first describe the synthesis of the
porphyrins bearing hydrocarbon tethers. We then de-
scribe the two high-temperature processing methods for
(7) (a) Song, J . H.; Sailor, M. J . Comments Inorg. Chem. 1999, 21,
69-84. (b) Buriak, J . M. Chem. Commun. 1999, 1051-1060. (c)
Hamers, R. J .; Coulter, S. K.; Ellison, M. D.; Hovis, J . S.; Padowitz, D.
F.; Schwartz, M. P.; Greenlief, C. M.; Russell, J . N., J r. Acc. Chem.
Res. 2000, 33, 617-624. (d) Buriak, J . M. Chem. Rev. 2002, 102, 1271-
1308. (e) Bent, S. F. Surf. Sci. 2002, 500, 879-903. (f) Stewart, M. P.;
Buriak, J . M. Comments Inorg. Chem. 2002, 23, 179-203.
(8) Cleland, G.; Horrocks, B. R.; Houlton, A. J . Chem. Soc., Faraday
Trans. 1995, 91, 4001-4003.
(19) Fellah, S.; Teyssot, A.; Ozanam, F.; Chazalviel, J .-N.; Vigneron,
J .; Etcheberry, A. Langmuir 2002, 18, 5851-5860.
(20) Bateman, J . E.; Eagling, R. D.; Worrall, D. R.; Horrocks, B. R.;
Houlton, A. Angew. Chem., Int. Ed. 1998, 37, 2683-2685.
(21) Boukherroub, R.; Morin, S.; Wayner, D. D. M.; Bensebaa, F.;
Sproule, G. I.; Baribeau, J .-M.; Lockwood, D. J . Chem. Mater. 2001,
13, 2002-2011.
(22) Wagner, P.; Nock, S.; Spudich, J . A.; Volkmuth, W. D.; Chu,
S.; Cicero, R. L.; Wade, C. P.; Linford, M. R.; Chidsey, C. E. D. J . Struct.
Biol. 1997, 119, 189-201.
(23) Boukherroub, R.; Wayner, D. D. M. J . Am. Chem. Soc. 1999,
121, 11513-11515.
(9) Kim, N. Y.; Laibinis, P. E. J . Am. Chem. Soc. 1997, 119, 2297-
2298.
(10) Zhu, X.-Y.; Boiadjiev, V.; Mulder, J . A.; Hsung, R. P.; Major, R.
C. Langmuir 2000, 16, 6766-6772.
(11) Boukherroub, R.; Morin, S.; Sharpe, P.; Wayner, D. D. M.;
Allongue, P. Langmuir 2000, 16, 7429-7434.
(12) Balakumar, A.; Lysenko, A. B.; Carcel, C.; Malinovskii, V. L.;
Gryko, D. T.; Schweikart, K.-H.; Loewe, R. S.; Yasseri, A. A.; Liu, Z.;
Bocian, D. F.; Lindsey, J . S. J . Org. Chem. 2004, 69, 1435-1443.
(13) International Technology Roadmap for Semiconductors, 2003
(14) Linford, M. R.; Chidsey, C. E. D. J . Am. Chem. Soc. 1993, 115,
12631-12632.
(15) Linford, M. R.; Fenter, P.; Eisenberger, P. M.; Chidsey, C. E.
D. J . Am. Chem. Soc. 1995, 117, 3145-3155.
(16) Bansal, A.; Li, X.; Lauermann, I.; Lewis, N. S.; Yi, S. I.;
Weinberg, W. H. J . Am. Chem. Soc. 1996, 118, 7225-7226.
(17) Allongue, P.; de Villeneuve, C. H.; Pinson, J .; Ozanam, F.;
Chazalviel, J . N.; Wallart, X. Electrochim. Acta 1998, 43, 2791-2798.
(18) Gurtner, C.; Wun, A. W.; Sailor, M. J . Angew. Chem., Int. Ed.
1999, 38, 1966-1968.
(24) Barrelet, C. J .; Robinson, D. B.; Cheng, J .; Hunt, T. P.; Quate,
C. F.; Chidsey, C. E. D. Langmuir 2001, 17, 3460-3465.
(25) Zazzera, L. A.; Evans, J . F.; Deruelle, M.; Tirrell, M.; Kessel,
C. R.; Mckeown, P. J . Electrochem. Soc. 1997, 144, 2184-2189.
(26) (a) Buriak, J . M.; Allen, M. J . J . Am. Chem. Soc. 1998, 120,
1339-1340. (b) Holland, J . M.; Stewart, M. P.; Allen, M. J .; Buriak, J .
M. J . Solid State Chem. 1999, 147, 251-258. (c) Buriak, J . M.; Stewart,
M. P.; Geders, T. W.; Allen, M. J .; Choi, H. C.; Smith, J .; Raftery, D.;
Canham, L. T. J . Am. Chem. Soc. 1999, 121, 11491-11502.
(27) Cerofolini, G. F.; Galati, C.; Reina, S.; Renna, L. Semicond. Sci.
Technol. 2003, 18, 423-429.
(28) Stewart, M. P.; Robins, E. G.; Geders, T. W.; Allen, M. J .; Choi,
H. C.; Buriak, J . M. Phys. Status Solidi 2000, 182, 109-115.
J . Org. Chem, Vol. 69, No. 17, 2004 5569