Paper
NJC
(l = 551 nm, e = 21 000 Mꢀ1 cmꢀ1); the DPD reagent was
oxidised by either H2O2 and/or the organoperoxides and was
based on the peroxidase-catalysed reaction. It is known that the
catalase enzyme can eliminate H2O2 from a mixture of H2O2
and organoperoxides. If the catalase is added to a solution that
contains H2O2 and organoperoxides before the DPD method is
used, then this DPD method assays only the organoperoxides.
We can therefore discriminate between H2O2 and the organo-
peroxides to determine if the alkyl peroxides ROOH were
decomposed over the course of the reaction or accumulated
at a high concentration.
The electron spin resonance (ESR) signals of the radicals
that were trapped by DMPO were detected at ambient tempera-
ture with a Bruker ESR 500 E spectrometer under the same
reaction conditions that were used for the other reactions.
A 30 mL sample of the solution was collected at a specified
time and transferred to a quartz capillary for ESR measure-
ment. The settings for the ESR spectrometer were as follows:
centre field, 3443 G; sweep width, 100 G; microwave frequency,
9.64 GHz; modulation frequency, 100 kHz; power, 10.05 mW.
To minimise experimental errors, the same quartz capillary
tube was used for all EPR measurements. The temperature was
controlled with a standard temperature accessory and was
monitored before and after each measurement.
Mendeleev Commun., 1992, 2, 36; (c) G. B. Shul’pin and
M. M. Kats, React. Kinet. Catal. Lett., 1990, 41, 239;
(d) G. B. Shul’pin, A. N. Druzhinina and L. S. Shul’pina,
Pet. Chem., 1993, 33, 321; (e) G. B. Shul’pin, G. V. Nizova and
Y. N. Kozlov, New J. Chem., 1996, 20, 1243.
11 L. Li, S. Niu, D. Li, J. Jin, Y. Chi and Y. Xing, Inorg. Chem.
Commun., 2011, 14, 993.
12 (a) M. Costas, M. P. Mehn, M. P. Jensen and L. Que, Jr.,
Chem. Rev., 2004, 104, 939; (b) M. D. Wolfe and
J. D. Lipscomb, J. Biol. Chem., 2003, 278, 829.
13 (a) P. D. Oldenburg, C. Y. Ke, A. A. Tipton, A. A. Shteinman and
L. Que, Jr., Angew. Chem., Int. Ed., 2006, 45, 7975; (b) A. Beck,
B. Weibert and N. Burzlaff, Eur. J. Inorg. Chem., 2001, 521;
(c) A. Beck, A. Barth, E. Hubner and N. Burzlaff, Inorg. Chem.,
2003, 42, 7182; (d) P. D. Oldenburg, Y. Feng, I. P. Ray, D. Ness
and L. Que, Jr., J. Am. Chem. Soc., 2010, 132, 17713.
14 J. Heilmann, H. W. Lerner and M. Bolte, Acta Crystallogr.,
2006, 62, 1477.
15 K. Chen and L. Que, Jr., J. Am. Chem. Soc., 2001, 123, 6327.
16 A. Danion, J. Disdier, C. Guillard and N. Jaffrezic-Renault,
J. Photochem. Photobiol., A, 2007, 190, 135.
17 (a) X. Tao, W. Ma, T. Zhang and J. Zhao, Angew. Chem., Int.
Ed., 2001, 40, 3014; (b) Y. Huang, W. Ma, J. Li, M. Cheng and
J. Zhao, J. Phys. Chem. B, 2003, 107, 9409.
18 (a) G. B. Shul’pin, J. Mol. Catal. A: Chem., 2002, 189, 39;
(b) G. B. Shul’pin, Y. N. Kozlov, L. S. Shul’pina,
A. R. Kudinov and D. Mandelli, Inorg. Chem., 2009,
48, 10480; (c) G. B. Shul’pin, Y. N. Kozlov, L. S. Shul’pina
and P. V. Petrovskiy, Appl. Organomet. Chem., 2010, 24, 464.
19 (a) H. Bader, V. Sturzenegger and J. Hoigne, Water Res.,
1988, 22, 1109; (b) Y. Zuo and J. Hoigne, Science, 1993,
260, 71; (c) T. Wu, G. Liu and J. Zhao, J. Phys. Chem. B, 1999,
103, 4862.
Acknowledgements
Financial support from 973 projects (No. 2010CB933503 and
2013CB632405), the NSFC (No. 21137004, 21077110 and
21273445), and CAS is greatly appreciated.
References
20 (a) M. S. Chen and M. C. White, Science, 2010, 39, 566;
(b) Y. He, J. D. Gorden and C. R. Goldsmith, Inorg. Chem.,
1 (a) A. Sobkowiak, A. Qui, X. Liu, A. Liobet and D. T. Sawyer,
J. Am. Chem. Soc., 1993, 115, 609; (b) M. S. Chen and
M. C. White, Science, 2007, 318, 783; (c) S. Kille, F. E. Zilly,
J. P. Acevedo and M. T. Reetz, Nat. Chem., 2011, 3, 738.
2 (a) G. B. Shul’pin, Org. Biomol. Chem., 2010, 8, 4217;
(b) T. Newhouse and P. S. Baran, Angew. Chem., Int. Ed.,
2011, 50, 3362.
3 C. Kim, K. Chen, J. Kim and L. Que, Jr., J. Am. Chem. Soc.,
1997, 119, 5964.
4 (a) G. A. Olah, M. B. Comisaro, C. A. Cupas and
C. U. Pittman, J. Am. Chem. Soc., 1965, 87, 2997;
(b) M. Meot-Ner, J. J. Solomon and F. H. Field, J. Am. Chem.
Soc., 1976, 98, 1025.
´
2011, 50, 12651–12660; (c) I. Prat, L. Gomez, M. Canta,
X. Ribas and M. Costas, Chem.–Eur. J., 2013, 19, 1908.
21 (a) H. J. Schneider and W. J. Muller, J. Org. Chem., 1985,
50, 4609; (b) R. Mello, M. Fiorentino, C. Fusco and R. Curci,
J. Am. Chem. Soc., 1989, 111, 6749; (c) A. R. Groenhof,
A. W. Ehlers and K. Lammertsma, J. Phys. Chem. A, 2008,
112, 12855; (d) D. D. DesMarteau, A. Donadelli, V. A. Petrov
and G. Resnati, J. Am. Chem. Soc., 1993, 115, 4897;
(e) G. B. Shul’pin, C. C. Golfeto, G. Su
¨ss-Fink, L. S. Shul’Pina
and D. ManDelli, Tetrahedron Lett., 2005, 46, 4563; ( f ) J. R. L.
Smith and G. B. Shul’pin, Tetrahedron Lett., 1998, 39, 4909;
(g) K. Nehru, S. J. Kim, I. Y. Kim, M. S. Seo, Y. Kim, S. J. Kim,
J. Kim and W. Nam, Chem. Commun., 2007, 4623.
5 G. Roelfes, M. Lubben, R. Hage, L. Que, Jr. and B. L. Feringa,
Chem.–Eur. J., 2000, 6, 2152.
6 J. Green and H. Dalton, J. Biol. Chem., 1989, 17698.
22 In Table 3 of ref. 8, systems with carboxylate group based
oxidant of peracetic acid and m-CPBA increased the regio-
selectivity for secondary C–H bonds.
´
7 R. M. Balleste and L. Que, Jr., Science, 2006, 312, 1885.
8 K. Kamata, K. Yonehara, Y. Nakagawa, K. Uehara and
N. Mizuno, Nat. Chem., 2010, 2, 478.
23 V. Ullrich, Angew. Chem., Int. Ed. Engl., 1972, 11, 701.
9 X. Chen, W. Ma, J. Li, Z. Wang, C. Chen, H. Ji and J. Zhao, 24 M. Fontercave and D. Mansuy, Tetrahedron, 1984, 40, 4297.
J. Phys. Chem. C, 2011, 115, 4089.
10 (a) G. B. Shul’pin and G. V. Nizova, Mendeleev Commun.,
1995, 5, 143; (b) G. B. Shul’pin and A. N. Druzhinina,
25 A. M. Kirillov, M. V. Kirillova, L. S. Shul’ pina, P. J. Figiel,
K. R. Gruenwald, M. F. C. Silva, M. Haukka, A. J. L. Pombeiro
and G. B. Shul’pin, J. Mol. Catal. A: Chem., 2011, 350, 26.
c
New J. Chem.
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2013