4168
A. Gomtsyan et al. / Bioorg. Med. Chem. Lett. 14 (2004) 4165–4168
1999, 64, 2240; (b) Erion, M. D.; Ugarkar, B. G.; DaRe,
J.; Castellino, A. J.; Fujitaki, J. M.; Dixon, R.; Appleman,
J. R.; Wiesner, J. B. Nucleos. Nucleot. 1997, 16, 1013; (c)
Ugarkar, B. G.; Castellino, A. J.; DaRe, J. S.; Ramirez-
Weinhouse, M.; Kopcho, J. J.; Rosengren, S.; Erion, M.
D. J. Med. Chem. 2003, 46, 4750, and references cited
therein.
value of 30 nM. N-Demethylation of this compound
with subsequent ring closing by intramolecular hydro-
amination of the triple bond yields the compound 17a
that is virtually inactive (IC50 >1000 nM). This rein-
forces the importance of a rigid linear trajectory of the
alkynyl substituent in the 6-position of pyrimidines like
3 for the optimum inhibition of the enzyme.15
6. (a) Lee, C.-H.; Jiang, M.; Cowart, M.; Gfesser, G.; Perner,
R.; Kim, K.; Gu, Y. G.; Williams, M.; Jarvis, M.;
Kowaluk, E.; Stewart, A.; Bhagwat, S. J. Med. Chem.
2001, 44, 2133; (b) Cowart, M.; Lee, C.-H.; Gfesser, G. A.;
Bayburt, E. K.; Bhagwat, S. S.; Stewart, A. O.; Yu, H.;
Kohlhaas, K. L.; McGaraughty, S.; Wismer, C. T.;
Mikusa, J.; Zhu, C.; Alexander, K. M.; Jarvis, M. F.;
Kowaluk, E. A. Bioorg. Med. Chem. Lett. 2001, 11, 83–86;
(c) Gfesser, G. A.; Bayburt, E. K.; Cowart, M.; Didome-
nico, S.; Gomtsyan, A.; Lee, C.-H.; Stewart, A. O.; Jarvis,
M. F.; Kowaluk, E. A.; Bhagwat, S. S. Eur. J. Med. Chem.
2003, 38, 245; (d) Perner, R. J.; Gu, Y.-G.; Lee, C.-H.;
Bayburt, E. K.; McKie, J.; Alexander, K. M.; Kohlhaas,
K. L.; Wismer, C. T.; Mikusa, J.; Jarvis, M. F.; Kowaluk,
E. A.; Bhagwat, S. S. J. Med. Chem. 2003, 46, 5249.
7. Gomtsyan, A.; Didomenico, S.; Lee, C.-H.; Matulenko,
M. A.; Kim, K.; Kowaluk, E. A.; Wismer, C. T.; Mikusa,
J.; Yu, H.; Kohlhaas, K.; Jarvis, M. F.; Bhagwat, S. S.
J. Med. Chem. 2002, 45, 3639.
8. For a review on nonnucleoside AK inhibitors, see:
Gomtsyan, A.; Lee, C.-H. Curr. Pharmaceut. Des. 2004,
10, 1093.
9. Hajduk, P. J.; Gomtsyan, A.; Didomenico, S.; Cowart,
M.; Bayburt, E. K.; Solomon, L.; Severin, J.; Smith, R.;
Walter, K.; Holzman, T. F.; Stewart, A.; McGaraughty,
S.; Jarvis, M. F.; Kowaluk, E. A.; Fesik, S. W. J. Med.
Chem. 2000, 43, 4781.
In summary, we have investigated three new approaches
of modifying existing pyridopyrimidine and alkynylpyr-
imidine AK inhibitors. It was shown that substitution at
the 4-position of the pteridine core, as a surrogate for the
pyridopyrimidine, resulted in compounds 8a–e which,
while potent, were generally inferior to the previously
reported best examples of the pyridopyrimidine class of
compounds having substitutions at 5- and 6-positions. In
the case of the alkynylpyrimidine AK inhibitors,
restriction of the flexibility of the lipophilic group at the
5-position by forming fused pyrazole ring between the
nitrogen of the 4-amino group and the benzylic carbon of
5-benzyl group can be beneficial as compounds 13c
(IC50 ¼ 7.5 nM) and 13d (IC50 ¼ 22 nM) displayed in-
creased or equal AK inhibition in comparison with ring-
opened analog 13g (IC50 ¼ 22 nM). In contrast, the pyr-
role ring formation between the nitrogen of the 5-sub-
stituent and the alkynyl carbon at the 6-position yielded
compound 17a that was significantly less active (IC50
>1000 nM) than corresponding ring-opened molecule
17b (IC50 ¼ 30 nM). This can potentially be explained by
the loss of specific binding of the morpholinopyridyl
substituent due to an incorrect steric direction.
10. Kuo, D. L. Tetrahedron 1992, 48, 9233.
11. Temple, C.; Laseter, A. G.; Rose, J. D.; Montgomery, J.
A. J. Heterocycl. Chem. 1970, 7, 1195.
12. (a) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991,
113, 6689; (b) Larock, R. C.; Yum, E. K.; Refvik, M. D.
J. Org. Chem. 1998, 63, 7652.
Acknowledgements
We thank Dr. Tom Pagano for excellent NMR support
and Kathy Kohlhaas for assistance with the in vitro
data.
13. One of the reviewers offered to explain that discrepancy by
a limited overall size of the binding pocket, that is, the
morpholino and methyl groups make 13e larger and
consequently less fit to the binding pocket than morpho-
lino and hydrogen in 13d. Although this could be a
reasonable argument, there are many pyridopyrimidine
AK inhibitors with the 7-substituent much larger than
morpholino group, but still showing single or low double
digit potency, see: Zheng, G. Z.; Mao, Y.; Lee, Ch.-H.;
Pratt, J. R.; Koenig, R. J.; Perner, R.; Cowart, M.;
Gfesser, G.; McGaraughty, S.; Chu, K.; Zhu, C.; Yu, H.;
Kohlhaas, K.; Alexander, K.; Wismer, C.; Mikusa, J.;
Jarvis, M. F.; Kowaluk, E. A.; Stewart, A. O. Bioorg.
Med. Chem. Lett. 2003, 13, 3041.
References and notes
1. Ralevic, V.; Burnstock, G. Pharmacol. Rev. 1998, 50, 413;
Williams, M.; Jarvis, M. Biochem. Pharmacol. 2000, 59,
1173.
2. Arch, J. R. S.; Newsholme, E. A. Essays Biochem. 1978,
14, 82.
3. Moser, G. H.; Schrader, J.; Duessen, A. Am. J. Physiol.
1989, 25, C799.
4. Davies, L. P.; Jamieson, D. D.; Baird-Lambert, J. A.;
Kazlauskas, R. Biochem. Pharmacol. 1984, 33, 347.
5. For more nucleoside-type AK inhibitors, see: (a) Cowart,
M. C.; Bennett, M. J.; Kerwin, J. F., Jr. J. Org. Chem.
14. For the description of AK inhibition assay, see: Jarvis, M.
F.; Yu, H.; Kohlhaas, K.; Alexander, K.; Lee, C.-H.;
Jiang, M.; Bhagwat, S. S.; Williams, M.; Kowaluk, E. A.
J. Pharmacol. Exp. Ther. 2000, 295, 1165.
15. Unpublished data.