Organometallics
Communication
critical to the electrocatalytic activity of the P2N2 complexes.10
By combining the synthesis described in this report with
electrode surface modification techniques, the freedom of the
pendant base should be preserved while attachment of an
appropriate functional group to the phosphine substituent will
enable a direct connection between the electrode and the
catalytic site.
Ibrahim, S. K.; De Gioia, L.; Davies, S. C.; Yang, X.; Sawers, G.;
Pickett, C. J. Nature 2005, 433, 610−613.
(5) Yang, J. Y.; Chen, S.; Dougherty, W. G.; Kassel, W. S.; Bullock, R.
M.; DuBois, D. L.; Raugei, S.; Rousseau, R.; Dupuis, M.; DuBois, M. R.
Chem. Commun. 2010, 46, 8618−8620.
(6) Wilson, A. D.; Shoemaker, R. K.; Miedaner, A.; Muckerman, J. T.;
DuBois, D. L.; DuBois, M. R. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
6951−6956.
In addition, we are using this synthesis to modify the
(7) Yang, J. Y.; Bullock, R. M.; Dougherty, W. G.; Kassel, W. S.;
Twamley, B.; DuBois, D. L.; DuBois, M. R. Dalton Trans. 2010, 39,
3001−3010.
electrocatalytic activity of PR NR′ complexes of nickel and
2
2
other metals. By increasing the electron-donating character of
the phosphine substituent, the redox potentials of the metal
(8) Galan, B. R.; Schoffel, J.; Linehan, J. C.; Seu, C.; Appel, A. M.;
̈
Roberts, J. A. S.; Helm, M. L.; Kilgore, U. J.; Yang, J. Y.; DuBois, D. L.;
Kubiak, C. P. J. Am. Chem. Soc. 2011, 133, 12767−12779.
PR NR′2 complexes can be pushed to more negative values, and
2
the hydricities of the corresponding [NiH(PR NR′ )]+ com-
(9) Wilson, A. D.; Newell, R. H.; McNevin, M. J.; Muckerman, J. T.;
DuBois, M. R.; DuBois, D. L. J. Am. Chem. Soc. 2006, 128, 358−366.
(10) Kilgore, U. J.; Roberts, J. A. S.; Pool, D. H.; Appel, A. M.;
Stewart, M. P.; DuBois, M. R.; Dougherty, W. G.; Kassel, W. S.;
Bullock, R. M.; DuBois, D. L. J. Am. Chem. Soc. 2011, 133, 5861−5872.
(11) Fraze, K.; Wilson, A. D.; Appel, A. M.; DuBois, M. R.; DuBois,
D. L. Organometallics 2007, 26, 3918−3924.
2
2
plexes should also increase.18 This thermodynamic property
can be used to predict whether a complex will oxidize H2 or
reduce protons under the given reaction conditions.19 Our goal
is to find a similar balance in the new complexes with regard to
formate oxidation and carbon dioxide reduction.8 Adding more
electronically donating and less sterically bulky substituents
increases the hydride donation ability and should push formate
oxidation catalysis toward its microscopic reverse, the single
proton-coupled two-electron reduction of carbon dioxide to
formate or further reduction products. Further studies of P2N2
ligands synthesized by this method and their corresponding
metal complexes will be reported in due course.
(12) Markl, V. G.; Jin, G. Y.; Schoerner, C. Tetrahedron Lett. 1980,
̈
21, 1409−1412.
(13) Van Hooijdonk, M. C. J. M.; Gerritsen, G.; Brandsma, L.
Phosphorus, Sulfur Silicon Relat. Elem. 2006, 162, 39−49.
(14) (a) Griffiths, D. V.; Groombridge, H. J.; Salt, M. C. Phosphorus,
Sulfur Silicon Relat. Elem. 2008, 183 (2−3), 473−478. (b) Petrov, K.
A.; Parshina, V. A.; Luzanova, M. B. J. Gen. Chem. USSR 1962, 32, 542.
(15) Caporali, M.; Gonsalvi, L.; Zanobini, F.; Peruzzini, M. Inorg.
Synth. 2010, 35, 96−101.
ASSOCIATED CONTENT
* Supporting Information
(16) (a) The P2N2 ligand PMe2NPh has been synthesized previously,
■
2
S
but spectral data were not reported. See: Markel, V. G.; Jin, G. Y.;
̈
Schoener, C. Tetrahedron Lett. 1980, 31, 1409−1412. (b) PBn2NPh2 and
its nickel complexes have been synthesized via the traditional P2N2
synthesis. See: Kilgore, U. J.; Stewart, M. P.; Helm, M. L.; Dougherty,
W. G.; Kassel, W. S.; DuBois, M. R.; DuBois, D. L.; Bullock, R. M.
Inorg. Chem. 2011, 50, 10908−10918.
Text and figures giving experimental details and cyclic
voltammograms for compounds prepared in this paper and a
CIF file giving X-ray crystal data for 11. This material is
(17) Le Goff, A.; Artero, V.; Jousselme, B.; Tran, P. D.; Guillet, N.;
AUTHOR INFORMATION
Corresponding Author
■
́ ́
Metaye, R.; Fihri, A.; Palacin, S.; Fontecave, M. Science 2009, 326,
1384−1387.
(18) Berning, D. E.; Noll, B. C.; DuBois, D. L. J. Am. Chem. Soc.
1999, 121, 11432−11447.
Notes
(19) Berning, D. E.; Miedaner, A.; Curtis, C. J.; Noll, B. C.; DuBois,
M. R.; DuBois, D. L. Organometallics 2001, 20, 1832−1839.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This material is based upon work supported by the Air Force
Office of Scientific Research through the MURI program under
AFOSR Award No. FA9550-10-1-0572. Financial support of
the National Science Foundation (Grant No. CHE-0741968) is
gratefully acknowledged. Professor Arnold Rheingold and Dr.
Curtis Moore are acknowledged for assistance with crystallog-
raphy. Dr. Yongxuan Su is acknowledged for mass spectrometry
services. Dr. D. L. DuBois and Dr. A. M. Appel from PNNL are
gratefully acknowledged for helpful discussions. Dr. U. J.
Kilgore is acknowledged for independent verification of the
PMe2NPh synthesis.
2
REFERENCES
■
(1) Benson, E. E.; Kubiak, C. P.; Sathrum, A. J.; Smieja, J. M. Chem.
Soc. Rev. 2009, 38, 89−99.
(2) Reece, S. Y.; Hodgkiss, J. M.; Stubbe, J.; Nocera, D. G. Philos.
Trans. R. Soc. B 2006, 361, 1351−1364.
̀
(3) Nicolet, Y.; de Lacey, A. L.; Vernede, X.; Fernandez, V. M.;
Hatchikian, E. C.; Fontecilla-Camps, J. C. J. Am. Chem. Soc. 2001, 123,
1596−1601.
(4) (a) Schwartz, L.; Eilers, G.; Eriksson, L.; Gogoll, A.; Lomoth, R.;
Ott, S. Chem. Commun. 2006, 5, 520−522. (b) Tard, C.; Liu, X.;
782
dx.doi.org/10.1021/om201168h | Organometallics 2012, 31, 779−782