Journal of Medicinal Chemistry
ARTICLE
breast cancer identifies patients with poor clinical outcome independent
of Her2/neu. Int. J. Cancer 2005, 113, 678–682. (c) Lo Muzio, L.; Farina,
A.; Rubini, C.; Coccia, E.; Capogreco, M.; Colella, G.; Leonardi, R.;
Campisi, G.; Carinci, F. Effect of c-MET expression on survival in head
and neck squamous cell carcinoma. Tumor Biol. 2006, 27, 116–121. (d)
Sawada, K.; Radjabi, A. E.; Shinomiya, N.; Kistner, E.; Kenny, H.; Becker,
A. R.; Turkyilmaz, M. A.; Salgia, R.; Yamada, S. D.; Vande Woude, G. F.;
Tretiakova, M. S.; Lengyel, E. c-MET overexpression is a prognostic
factor in ovarian cancer and an effective target for inhibition of peritoneal
dissemination and invasion. Cancer Res. 2007, 67, 1670–1679. (e)
Drebber, U.; Baldus, S. E.; Nolden, B.; Grass, G.; Bollschweiler, E.;
Dienes, H. P.; H€olscher, A. H.; M€onig, S. P. Overexpression of c-MET as
a prognostic indicator for gastric carcinoma compared to p53 and p21
nuclear accumulation. Oncol. Rep. 2008, 19, 1477–1483.
exhibits cytoreductive antitumor efficacy through antiproliferative
and antiangiogenic mechanisms. Cancer Res. 2007, 67, 4408–4417.
(b) Christensen, J. G.; Zou, H. Y.; Arango, M. E.; Li, Q.; Lee, J. H.;
McDonnell, S. R.; Yamazaki, S.; Alton, G.; Mroczkowski, B.; Christensen,
J. G. Cytoreductive antitumor activity of PF-2341066, a novel inhibitor
of anaplastic lymphoma kinase and c-MET, in experimental models
of anaplastic large-cell lymphoma. Mol. Cancer Ther. 2007, 6, 3314–
3322.
(11) McDermott, U.; Iafrate, A. J.; Gray, N. S.; Shioda, T.; Classon,
M.; Maheswaran, S.; Zhou, W.; Choi, H. G.; Smith, S. L.; Dowell, L.;
Ulkus, L. E.; Kuhlmann, G.; Greninger, P.; Christensen, J. G.; Haber,
D. A.; Settleman, J. Genomic alterations of anaplastic lymphoma kinase
may sensitize tumors to anaplastic lymphoma kinase inhibitors. Cancer
Res. 2008, 68, 3389–3395.
(4) Morris, S. W.; Kirstein, M. N.; Valentine, M. B.; Dittmer, K. G.;
Shapiro, D. N.; Saltman, D. L.; Look, A. T. Fusion of a kinase gene, ALK,
to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science
1994, 263, 1281–1284.
(5) Bischof, D.; Pulford, K.; Mason, D. Y.; Morris, S. W. Role of the
nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-
associated NPM-anaplastic lymphoma kinase fusion protein in onco-
genesis. Mol. Cell. Biol. 1997, 17, 2312–2325.
(12) Sun, L.; Liang, C.; Shirazian, S.; Zhou, Y.; Miller, T.; Cui, J.;
Fukuda, J. Y.; Chu, J.-Y.; Nematalla, A.; Wang, X.; Chen, H.; Sistla, S.;
Luu, T. L.; Tang, F.; Wei, J.; Tang, C. Discovery of 5-[5-fluoro-2-oxo-
1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4- dimethyl-1H-pyrrole-3-car-
boxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase in-
hibitor targeting vascular endothelial and platelet-derived growth factor
receptor tyrosine kinase. J. Med. Chem. 2003, 46, 1116–1119.
(13) (a) Cui, J. J. Unpublished results. (b) Cui, J.; Zhang, R.; Shen,
H.; Chu, J. Y.; Zhang, F.-J.; Koenig, M.; Do, S. H.; Li, X.; Wei, C. C.;
Tang, P. C. Preparation of 4-Aryl Substituted Indolinones as Protein
Kinase Signal Transduction Modulators for Inhibiting Abnormal Cell
Proliferation. PCT Int. Appl. WO2002055517, 2002. (c) Cui, J.;
Ramphal, Y.; Liang, C.; Sun, L.; Wei, C. C.; Tang, P. C. Preparation of
5-Aralkylsulfonyl-3-(pyrrol-2-ylmethylidene)-2-indolinone Derivatives
as Kinase Inhibitors. PCT Int. Appl. WO2002096361, 2002.
(14) Ryckmans, T.; Edwards, M. P.; Hornea, V. A.; Correiac, A. M.;
Owena, D. R.; Thompsona, L. R.; Trana, I.; Tuttc, M. F.; Youngc, T.
Rapid assessment of a novel series of selective CB2 agonists using
parallel synthesis protocols: a lipophilic efficiency (LipE) analysis.
Bioorg. Med. Chem. Lett. 2009, 19, 4406–4409.
(15) Edwards, M. P.; Price, D. A. Role of physicochemical properties
and lipophilic ligand efficiency (LipE or LLE) in addressing drug safety
risks. Annu. Rep. Med. Chem. 2010, 45, 381–391.
(6) Palmer, R. H.; Vernersson, E.; Grabbe, C.; Hallberg, B. Anaplastic
lymphomakinase:signalling indevelopmentand disease. Biochem. J. 2009,
420, 345–361.
(7) (a) Soda, M.; Choi, Y. L.; Enomoto, M.; Takada, S.; Yamashita,
Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.;
Bando, M.; Ohno, S.; Ishikawa, Y.; Aburatani, H.; Niki, T.; Sohara, Y.;
Sugiyama, Y.; Mano, H. Identification of the transforming EML4-ALK
fusion gene in non-small cell lung cancer. Nature 2007, 448, 561–566.
(b) Rikova, K.; Guo, A.; Zeng, Q.; Possemato, A.; Yu, J.; Haack, H.;
Nardone, J.; Lee, K.; Reeves, C.; Li, Y.; Hu, Y.; Tan, Z.; Stokes, M.;
Sullivan, L.; Mitchell, J.; Wetzel, R.; MacNeill, J.; Ren, J. M.; Yuan, J.;
Bakalarski, C. E.; Villen, J.; Kornhauser, J. M.; Smith, B.; Li, D.; Zhou, X.;
Gygi, S. P.; Gu, T.-L.; Polakiewicz, R. D.; Rush, J.; Comb, M. J. Global
survey of phosphotyrosine signaling identifies oncogenic kinases in lung
cancer. Cell 2007, 131, 1190–1203.
(8) Soda, M.; Takada, S.; Takeuchi, K.; Choi, Y. L.; Enomoto, M.;
Ueno, T.; Haruta, H.; Hamada, T.; Yamashita, Y.; Ishikawa, Y.;
Sugiyama, Y.; Mano, H. A mouse model for EML4-ALK-positive lung
cancer. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 19893–19897.
(16) Wang, X.; Le, P.; Liang, C.; Chan, J.; Kiewlich, D.; Miller, T.;
Harris, D.; Sun, Li; Rice, A.; Vasile, S.; Blake, R. A.; Howlett, A. R.; Patel,
N.; McMahon, G.; Lipson, K. E. Potent and selective inhibitors of the
Met [hepatocyte growth factor/scatter factor (HGF/SF) receptor]
tyrosine kinase block HGF/SF-induced tumor cell growth and invasion.
Mol. Cancer Ther. 2003, 2, 1085–1092.
(17) (a) Christensen, J. G.; Schreck, R.; Burrows, J.; Kuruganti, P.;
Chan, E.; Le, P.; Chen, J.; Wang, X.; Ruslim, L.; Blake, R.; Lipson, K. E.;
Ramphal, J.; Do, S.; Cui, J. J.; Cherrington, J. M.; Mendel, D. B. A
selective small molecule inhibitor of c-MET kinase inhibits c-MET-
dependent phenotypes in vitro and exhibits cytoreductive antimutor
activity in vivo. Cancer Res. 2003, 63, 7345–7355. (b) Hov, H.; Utne
Holt, R.; Baade Rø, T.; Fagerli, U.-M.; Hjorth-Hansen, H.; Baykov, V.;
Christensen, J. G.; Waage, A.; Sundan, A.; Børset, M. A selective c-MET
inhibitor blocks an autocrine hepatocyte growth factor growth loop in
ANBL-6 cells and prevents migration and adhesion of myeloma cells.
Clin. Cancer Res. 2004, 10, 6686–6694.
(18) (a) Engelman, J. A.; Zejnullahu, K.; Mitsudomi, T.; Youngchul
Song, Y.; Hyland, C.; Park, J. O.; Lindeman, N.; Gale, C.-M.; Zhao, X.;
Christensen, J.; Kosaka, T.; Holmes, A. J.; Rogers, A. M.; Cappuzzo, F.;
Mok, T.; Lee, C.; Bruce E. Johnson, B. E.; Cantley, L. C.; Pasi, A.; J€anne,
P. A. MET amplification leads to gefitinib resistance in lung cancer by
activating ERBB3 signaling. Science 2007, 316, 1039–1043. (b) Smolen,
G. A.; Sordella, R.; Muir, B.; Mohapatra, G.; Barmettler, A.; Archibald,
H.; Kim, W. J.; Okimoto, R. A.; Bell, D. W.; Sgroi, D. C.; Christensen,
J. G.; Settleman, J.; Haber, D. A. Amplification of Met may identify a
subset of cancers with extreme sensitivity to the selective tyrosine kinase
inhibitor PHA-665752. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 2316–
2321. (c) Ma, P. C.; Schaefer, E.; Christensen, J. G.; Salgia, R. A selective
small molecule c-MET inhibitor, PHA665752, cooperates with rapamy-
cin. Clin. Cancer Res. 2005, 11, 2312–2319. (d) Puri, N.; Khramtsov, A.;
(9) (a) Caren, H.; Abel, F.; Kogner, P.; Martinsson, I. High incidence
of DNA mutations and gene amplifications of the ALK gene in advanced
sporadic neuroblastoma tumors. Biochem. J. 2008, 416, 153–159. (b)
Mossꢀe, Y. P.; Laudenslager, M.; Longo, L.; Cole, K. A; Wood, A.; Attiyeh,
E. F.; Laquaglia, M. J.; Sennett, R.; Lynch, J. E.; Perri, P.; Laureys, G.;
Speleman, F.; Kim, C.; Hou, C.; Hakonarson, H.; Torkamani, A.; Schork,
N. J.; Brodeur, G. M.; Tonini, G. P.; Rappaport, E.; Devoto, M.; Maris,
J. M. Identification of ALK as a major familial neuroblastoma predisposi-
tion gene. Nature 2008, 455, 930–935. (c) Janoueix-Lerosey, I.; Lequin,
D.; Brugieres, L.; Ribeiro, A.; de Pontual, L.; Combaret, V.; Raynal, V.;
Alain Puisieux, A.; Schleiermacher, G.; Pierron, G.; Valteau-Couanet, D.;
Frebourg, T.; Michon, J.; Lyonnet, S.; Amiel, J.; Delattre, O. Somatic and
germline activating mutations of the ALK kinase receptor in neuroblas-
toma. Nature 2008, 455, 967–970. (d) Chen, Y.; Takita, J.; Choi, Y. L.;
Kato, M.; Ohira, M.; Sanada, M.; Wang, Li.; Soda, M.; Kikuchi, A.;
Igarashi, T.; Nakagawara, A.; Hayashi, Y.; Mano, H.; Ogawa, S. Oncogenic
mutations of ALK kinase in neuroblastoma. Nature 2008, 455, 971–974.
(e) George, R. E.; Sanda, T.; Hanna, M.; Frohling, S.; Luther, W., 2nd;
Zhang, J.; Ahn, Y.; Zhou, W.; London, W. B.; McGrady, P.; Xue, L.;
Zozulya, S.; Gregor, V.; Webb, T. R.; Nathanael S. Gray, N. S.; Gilliland,
D. G.; Diller, L.; Greulich, H.; Stephan W. Morris, S. W.; Meyerson, M.;
Look, A. T. Activating mutations in ALK provides a therapeutic target in
neuroblastoma. Nature 2008, 455, 975–978.
(10) (a) Zou, H. Y.; Li, Q.; Lee, J. H.; Arango, M. E.; McDonnell,
S. R.; Yamazaki, S.; Koudriakova, T. B.; Alton, G.; Cui, J. J.; Kung, P.-P.;
Nambu, M. D.; Los, G.; Bender, B. L.; Mroczkowski, B.; Christensen,
J. G. An orally available small-molecule inhibitor of c-MET, PF-2341066,
6362
dx.doi.org/10.1021/jm2007613 |J. Med. Chem. 2011, 54, 6342–6363