Miyabe et al.
alization of guanidines. The first method involves the reaction
of guanidine with alcohols under Mitsunobu reaction condi-
tions.12 The second method is the alkylation of guanidine with
electrophiles such as alkyl halides under basic conditions.13
Recently, several new methods for the modification of guanidines
have been reported.14,15 However, the transition metal-catalyzed
modification of guanidines has not been widely studied,16
probable due to their strong basic character and high metal-
coodination ability.17 We focused our attention on the transition
metal-catalyzed allylic substitution of guanidines from the point
of view of synthetic application. Our recent studies show that
the nitrogen atom of guanidine derivatives having two N-
electron-withdrawing substituents acted as a reactive nucleophile
in the allylic substitution.18,19 In this paper, we describe full
details of a convenient and direct modification of guanidines
based on palladium- or iridium-catalyzed allylic substitution to
address the functionalized guanidines. As shown below, this
reaction is extremely facile and gives the allylated guanidines
in good yields under mild reaction conditions. Regio- and
enantioselective allylic substitution was also achieved by using
the iridium complex of the chiral pybox ligand.
(4) (a) Shah, J.; Blumenthal, H.; Yacob, Z.; Liebscher, J. AdV. Synth. Catal.
2008, 350, 1267. (b) Li, S.; Lin, Y.; Xie, H.; Zhang, S.; Xu, J. Org. Lett. 2006,
8, 391. (c) Jiang, T.; Gao, H.; Han, B.; Zhao, G.; Chang, Y.; Wu, W.; Gao, L.;
Yang, G. Tetrahedron Lett. 2004, 45, 2699.
(5) For recent synthetic studies on guanidine-containing natural products,
see:(a) Vergne, C.; Appenzeller, J.; Ratinaud, C.; Martin, M.-T.; Debitus, C.;
Zaparucha, A.; Al-Mourabit, A. Org. Lett. 2008, 10, 493. (b) Moore, C. G.;
Murphy, P. J.; Williams, H. L.; McGown, A. T.; Smith, N. K. Tetrahedron 2008,
64, 3176. (c) Shirai, A.; Miyata, O.; Tohnai, N.; Miyata, M.; Procter, D. J.;
Sucunza, D.; Naito, T. J. Org. Chem. 2008, 73, 4464. (d) Lanman, B. A.;
Overman, L. E.; Paulini, R.; White, N. S. J. Am. Chem. Soc. 2007, 129, 12896.
(e) Tsuchiya, S.; Sunazuka, T.; Hirose, T.; Mori, R.; Tanaka, T.; Iwatsuki, M.;
Omura, S. Org. Lett. 2006, 8, 5577. (f) Li, C.; Danishefsky, S. J. Tetrahedron
Lett. 2006, 47, 385. (g) Garrido-Hernandez, H.; Nakadai, M.; Vimolratana, M.;
Li, Q.; Doundoulakis, T.; Harran, P. G. Angew. Chem., Int. Ed. 2005, 44, 765.
(h) Ravinder, K.; Reddy, A. V.; Krishnaiah, P.; Ramesh, P.; Ramakrishna, S.;
Laatsch, H.; Venkateswarlu, Y. Tetrahedron Lett. 2005, 46, 5475. (i) DeMong,
D. E.; Williams, R. M. J. Am. Chem. Soc. 2003, 125, 8561. (j) Moore, C. G.;
Murphy, P. J.; Williams, H. L.; McGown, A. T.; Smith, N. K. Tetrahedron Lett.
2003, 44, 251. (k) Nagasawa, K.; Georgieva, A.; Koshino, H.; Nakata, T.; Kita,
T.; Hashimoto, Y. Org. Lett. 2002, 4, 177. (l) Powell, D. A.; Batey, R. A. Org.
Lett. 2002, 4, 2913. (m) Garg, N. K.; Sarpong, R.; Stoltz, B. M. J. Am. Chem.
Soc. 2002, 124, 13179. (n) Snider, B. B.; Ahn, Y.; O’Hare, S. M. Org. Lett.
2001, 3, 4217. (o) Batey, R. A.; Powell, D. A. Chem. Commun. 2001, 2362. (p)
Exposito, A.; Fernandez-Suarez, M.; Iglesias, T.; Munoz, L.; Riguera, R. J. Org.
Chem. 2001, 66, 4206. (q) Coffey, D. S.; McDonald, A. I.; Overman, L. E.;
Rabinowitz, M. H.; Renhowe, P. A. J. Am. Chem. Soc. 2000, 122, 4893. (r)
Coffey, D. S.; Overman, L. E.; Stappenbeck, F. J. Am. Chem. Soc. 2000, 122,
4904.
(6) For synthetic studies on cylindrospermopsin, see: (a) Looper, R. E.;
Runnegar, M. T. C.; Williams, R. M. Tetrahedron 2006, 62, 4549. (b) Looper,
R. E.; Runnegar, M. T. C.; Williams, R. M. Angew. Chem., Int. Ed. 2005, 44,
3879. (c) Looper, R. E.; Williams, R. M. Angew. Chem., Int. Ed. 2004, 43, 2930.
(d) Heintzelman, G. R.; Fang, W.-K.; Keen, S. P.; Wallace, G. A.; Weinreb,
S. M. J. Am. Chem. Soc. 2002, 124, 3939. (e) White, J. D.; Hansen, J. D. J. Am.
Chem. Soc. 2002, 124, 4950. (f) Xie, C.; Runnegar, M. T. C.; Snider, B. B.
J. Am. Chem. Soc. 2000, 122, 5017.
(7) For synthetic studies on batzelladines, see: (a) Evans, P. A.; Qin, J.;
Robinson, J. E.; Bazin, B. Angew. Chem., Int. Ed. 2007, 46, 7417. (b) Arnold,
M. A.; Day, K. A.; Duron, S. G.; Gin, D. Y. J. Am. Chem. Soc. 2006, 128,
13255. (c) Cohen, F.; Overman, L. E. J. Am. Chem. Soc. 2006, 128, 2604. (d)
Cohen, F.; Overman, L. E. J. Am. Chem. Soc. 2006, 128, 2594. (e) Shimokawa,
J.; Ishiwata, T.; Shirai, K.; Koshino, H.; Tanatani, A.; Nakata, T.; Hashimoto,
Y.; Nagasawa, K. Chem. Eur. J. 2005, 11, 6878. (f) Cohen, F.; Collins, S. K.;
Overman, L. E. Org. Lett. 2003, 5, 4485. (g) Ishiwata, T.; Hino, T.; Koshino,
H.; Hashimoto, Y.; Nakata, T.; Nagasawa, K. Org. Lett. 2002, 4, 2921. (h) Duron,
S. G.; Gin, D. Y. Org. Lett. 2001, 3, 1551. (i) Cohen, F.; Overman, L. E.; Ly,
S. K. Org. Lett. 1999, 1, 2169. (j) Franklin, A. S.; Ly, S. K.; Mackin, G. H.;
Overman, L. E.; Shaka, A. J. J. Org. Chem. 1999, 64, 1512.
(8) For synthetic studies on tetrodotoxin, see: (a) Sato, K.-I.; Akai, S.; Sugita,
N.; Ohsawa, T.; Kogure, T.; Shoji, H.; Yoshimura, J. J. Org. Chem. 2005, 70,
7496. (b) Nishikawa, T.; Urabe, D.; Isobe, M. Angew. Chem., Int. Ed. 2004, 43,
4782. (c) Nishikawa, T.; Urabe, D.; Yoshida, K.; Iwabuchi, T.; Asai, M.; Isobe,
M. Chem. Eur. J. 2004, 10, 452. (d) Nishikawa, T.; Urabe, D.; Yoshida, K.;
Iwabuchi, T.; Asai, M.; Isobe, M. Org. Lett. 2002, 4, 2679. (e) Hinmam, A.; Du
Bois, J. J. Am. Chem. Soc. 2003, 125, 11510.
(9) For synthetic studies on saxitoxin, see: (a) Iwamoto, O.; Koshino, H.;
Hashizume, D.; Nagasawa, K. Angew. Chem., Int. Ed. 2007, 46, 8625. (b)
Fleming, J. J.; McReynolds, M. D.; Du Bois, J. J. Am. Chem. Soc. 2007, 129,
9964. (c) Fleming, J. J.; Du Bois, J. J. Am. Chem. Soc. 2006, 128, 3926.
(10) (a) Kampf, A. Chem. Ber. 1904, 1681. (b) Davis, T. L. Org. Synth.
1927, 7, 46. (c) Rasmussen, C. R.; Villani, F. J., Jr.; Reynolds, B. E.; Plampin,
J. N.; Hood, A. R.; Hecker, L. R.; Nortey, S. O.; Hanslin, A.; Costanzo, M. J.;
Howse, R. M.; Molinari, A. J. Synthesis 1988, 460. (d) Braun, C. E. J. Am.
Chem. Soc. 1993, 55, 1280.
(11) (a) Maryanoff, C. A.; Stanzione, R. C.; Plampin, J. N.; Mills, J. E. J.
Org. Chem. 1986, 51, 1882. (b) Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R.
J. Org. Chem. 1992, 57, 2497. (c) Katritzky, A. R.; Parris, R. L.; Allin, S. M.
Synth. Commun. 1995, 25, 1173. (d) Bergeron, R. J.; McManis, J. S. J. Org.
Chem. 1987, 52, 1700. (e) Poss, M. A.; Iwanowicz, E.; Reid, J. A.; Lin, J.; Gu,
Z. Tetrahedron Lett. 1992, 33, 5933. (f) Verdini, A. S.; Lucietto, P.; Fossati,
G.; Giordani, C. Tetrahedron Lett. 1992, 33, 6541. (g) Kowalski, J.; Lipton,
M. A. Tetrahedron Lett. 1996, 37, 5839. (h) Kent, D. R.; Cody, W. L.; Doherty,
A. M. Tetrahedron Lett. 1996, 37, 8711. (i) Kim, K. S.; Qian, L. Tetrahedron
Lett. 1993, 34, 7677.
Results and Discussion
Palladium-Catalyzed Allylic Substitution of Guanidines. The
utility of guanidines in allylic substitution has not been
investigated, though guanidines are attractive reagents for the
synthesis of functionalized allylic compounds. Our methodology
utilizes guanidines as a nucleophile in the transition metal-
catalyzed allylic substitution. Significant advances were achieved
with the introduction of electron-withdrawing substituents on
nitrogen atoms of guanidine that allowed for the direct synthesis
(13) (a) Powell, D. A.; Ramsden, P. D.; Batey, R. A. J. Org. Chem. 2003,
68, 2300. (b) Dennis, M.; Hall, L. M.; Murphy, P. J.; Thornhill, A. J.; Nash, R.;
Winters, A. L.; Hursthouse, M. B.; Light, M. E.; Horton, P. Tetrahedron Lett.
2003, 44, 3075. (c) Isobe, T.; Fukuda, K.; Yamaguchi, K.; Seki, H.; Tokunaga,
T.; Ishikawa, T. J. Org. Chem. 2000, 65, 7779. (d) Vaidyanathan, G.; Zalutsky,
M. R. J. Org. Chem. 1997, 62, 4867. (e) Ko, S. Y.; Lerpiniere, J.; Christofi,
A. M. Synlett 1995, 815.
(14) Oxidative addition of guanidine, see: (a) Schroif-Gregoire, C.; Travert,
N.; Zaparucha, A.; Al-Mourabit, A. Org. Lett. 2006, 8, 2961. (b) Abou-Jneid,
R.; Ghoulami, S.; Martin, M.-T.; Dau, E. T. H.; Travert, N.; Al-Mourabit, A.
Org. Lett. 2004, 6, 3933. (c) del Rayo Sanchez Salvatori, M.; Abou-Jneid, R.;
Ghoulami, S.; Martin, M.-T.; Zaparucha, A.; Al-Mourabit, A. J. Org. Chem.
2005, 70, 8208.
(15) (a) Zeghida, W.; Debray, J.; Chierici, S.; Dumy, P.; Demeunynck, M.
J. Org. Chem. 2008, 73, 2473. (b) Albrecht, C.; Barnes, S.; Bo¨ckemeier, H.;
Davies, D.; Dennis, M.; Evans, D. M.; Fletcher, M. D.; Jones, I.; Leitmann, V.;
Murphy, P. J.; Rowles, R.; Nash, R.; Stephenson, R. A.; Horton, P. N.;
Hursthouse, M. B. Tetrahedron Lett. 2008, 49, 185. (c) Nilsson, B. L.; Overman,
L. E. J. Org. Chem. 2006, 71, 7706. (d) Zhao, J.-F.; Xie, C.; Xu, S.-Z.; Ding,
M.-W.; Xiao, W.-J. Org. Biomol. Chem. 2006, 130. (e) Nishiwaki, N.; Ogihara,
T.; Takami, T.; Tamura, M.; Ariga, M. J. Org. Chem. 2004, 69, 8382. (f) Zapf,
C. W.; Goodman, M. J. Org. Chem. 2003, 68, 10092. (g) Lasri, J.; Gonzalez-
Rosende, M. E.; Sepulveda-Arques, J. Org. Lett. 2003, 5, 3851. (h) Overman,
L. E.; Wolfe, J. P. J. Org. Chem. 2001, 66, 3167. (i) McDonald, A. I.; Overman,
L. E. J. Org. Chem. 1999, 64, 1520. (j) Esser, F.; Ehrengart, P.; Ignatow, H. P.
J. Chem. Soc., Perkin Trans. 1 1999, 1153. (k) Okawa, T.; Kawase, M.; Eguchi,
S.; Kakehi, A.; Shiro, M. J. Chem. Soc., Perkin Trans. 1 1998, 2277.
(16) For metal-catalyzed reactions of guanidines, see: (a) Ho¨velmann, C. H.;
Streuff, J.; Brelot, L.; Mun˜iz, K. Chem. Commun. 2008, 2334. (b) Kim, M.;
Mulcahy, J. V.; Espino, C. G.; Du Bois, J. Org. Lett. 2006, 8, 1073. Miller,
C. A.; Batey, R. A. Org. Lett. 2004, 6, 699. (c) Evindar, G.; Batey, R. A. Org.
Lett. 2003, 5, 133.
(17) For examples of guanidine as ligands, see: (a) Ajellal, N.; Lyubov, D. M.;
Sinenkov, M. A.; Fukin, G. K.; Cherkasov, A. V.; Thomas, C. M.; Carpentier,
J.-F.; Trifonov, A. A. Chem. Eur. J. 2008, 14, 5440. (b) Li, S.; Lin, Y.; Cao, J.;
Zhang, S. J. Org. Chem. 2007, 72, 4067. (c) Pi, C.; Zhu, Z.; Weng, L.; Chen,
Z.; Zhou, X. Chem. Commun. 2007, 2190. (d) Trifonov, A. A.; Skvortsov, G. G.;
Lyubov, D. M.; Skorodumova, N. A.; Fukin, G. K.; Baranov, E. V.; Glushakova,
V. N. Chem. Eur. J. 2006, 12, 5320. (e) Ko¨hn, U.; Schulz, M.; Go¨rls, H.; Anders,
E. Tetrahedron: Asymmetry 2005, 16, 2125. (f) Holland, A. W.; Bergman, R. G.
J. Am. Chem. Soc. 2002, 124, 9010. (g) Foley, S. R.; Yap, G. P. A.; Richeson,
D. S. Chem. Commun. 2000, 1515. (h) Thirupathi, N.; Yap, G. P. A.; Richeson,
D. S. Chem. Commun. 1999, 2483.
(12) (a) Feichtinger, K.; Sings, H. L.; Baker, T. J.; Matthews, K.; Goodman,
M. J. Org. Chem. 1998, 63, 8432. (b) Chen, L.; Trilles, R. V.; Tilley, J. W.
Tetrahedron Lett. 1995, 36, 8715. (c) Dodd, D. S.; Kozikowski, A. P. Tetrahedron
Lett. 1994, 35, 977.
(18) Miyabe, H.; Matsumura, A.; Yoshida, K.; Yamauchi, M.; Takemoto,
Y. Lett. Org. Chem. 2004, 1, 119.
(19) Relative palladium-catalyzed reaction was reported, see Zhou, H.-B.;
Alper, H. Tetrahedron 2004, 60, 73.
306 J. Org. Chem. Vol. 74, No. 1, 2009