Organic Letters
Letter
(2) (a) Schonherr, H.; Cernak, T. Angew. Chem., Int. Ed. 2013, 52,
12256. (b) Taylor, A. P.; Robinson, R. P.; Fobian, Y. M.; Blakemore,
D. C.; Jones, L. H.; Fadeyi, O. Org. Biomol. Chem. 2016, 14, 6611.
(c) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W.
Chem. Soc. Rev. 2016, 45, 546.
(3) (a) Beatty, J. W.; Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J.
Nat. Commun. 2015, 6, 7919. (b) Beatty, J. W.; Douglas, J. J.; Miller,
R.; McAtee, R. C.; Cole, K. P.; Stephenson, C. R. J. Chem. 2016, 1,
456.
(4) (a) Minisci, F.; Bernardi, R.; Bertini, F.; Galli, R.; Perchinummo,
M. Tetrahedron 1971, 27, 3575. (b) Langlois, B. R.; Laurent, E.;
Roidot, N. Tetrahedron Lett. 1991, 32, 7525. (c) Punta, C.; Minisci, F.
Trends Heterocycl. Chem. 2008, 13, 1.
(5) Select recent examples of Minisci alkylations: (a) Molander, G.
A.; Colombel, V.; Braz, V. A. Org. Lett. 2011, 13, 1852. (b) Presset, M.;
Fleury-Bregeot, N.; Oehlrich, D.; Rombouts, F.; Molander, G. A. J.
Org. Chem. 2013, 78, 4615. (c) Ji, Y.; Brueckl, T.; Baxter, R. D.;
Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc.
Natl. Acad. Sci. U. S. A. 2011, 108, 14411. (d) Fujiwara, Y.; Dixon, J.
A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R. A.; Baxter,
R. D.; Herle, B.; Sach, N.; Collins, H. R.; Ishihara, Y.; Baran, P. S.
Nature 2012, 492, 95.
(6) Select examples of photoredox catalysis-based alkylations: (a) Jin,
J.; MacMillan, D. W. C. Nature 2015, 525, 87. (b) DiRocco, D. A.;
Dykstra, K.; Krska, S.; Vachal, P.; Conway, D. V.; Tudge, M. Angew.
Chem., Int. Ed. 2014, 53, 4802. (c) Li, G. X.; Morales-Rivera, C.; Wang,
Y.; Gao, F.; He, G.; Liu, P.; Chen, G. Chem. Sci. 2016, 7, 6407.
(d) McCallum, T.; Barriault, L. Chem. Sci. 2016, 7, 4754. (e) Matsui, J.
K.; Primer, D. N.; Molander, G. A. Chem. Sci. 2017, 8, 3512. (f) Garza-
Sanchez, R. A.; Tlahuext-Aca, A.; Tavakoli, G.; Glorius, F. ACS Catal.
2017, 7, 4057. (g) Sherwood, T. C.; Li, N.; Yazdani, A. N.; Dhar, T. G.
M. J. Org. Chem. 2018, 83, 3000−3012. (h) Proctor, R. S. J.; Davis, H.
J.; Phipps, R. J. Science 2018, 360, 419.
Quantum yield studies indicate that radical-chain processes
are operative in our system, as evidenced by a ϕ of 1.7.7
Crossover experiments demonstrate the viability of both
intramolecular fragment coupling, as well as intermolecular
radical propagation pathways, as the decarboxylative alkylation
of two differentially functionalized acylated species gave rise to
an approximately 1:1 distribution of self-functionalized and
cross-functionalized products.7 Finally, we have demonstrated
the capability to run this decarboxylative alkylation reaction on
gram scale both in batch and in flow, suggesting that this
methodology may translate beyond discovery scale. Using a 900
μL flow reactor, 1 g of quinoline N-oxide was tert-butylated in
an overall 71% yield (relative to 68% yield on a 1 g scale in
batch), with a residence time of 2.25 min.7
In conclusion, we have reported an operationally simple and
visible light-mediated method for the decarboxylative alkylation
of heterocyclic N-oxides. Most significantly, this protocol offers
a platform for the reductive generation of alkyl radicals without
the reliance on stoichiometric additives, harsh reagents, and
sacrificial redox auxiliaries. We envision this methodology to be
of significant utility and practicality for the diversification of
heterocyclic scaffolds in a multitude of medicinal applications.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Descriptions of batch and flow photochemical setups,
additional data, procedures, and characterization data for
(8) De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.;
Geerlings, P.; De Proft, F. Org. Lett. 2007, 9, 2721.
(9) Gunaydin, H.; Bartberger, M. D. ACS Med. Chem. Lett. 2016, 7,
341.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(10) Stockdale, T. P.; Williams, C. M. Chem. Soc. Rev. 2015, 44, 7737.
(11) (a) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.;
Meanwell, N. A. J. Med. Chem. 2015, 58, 8315. (b) Purser, S.; Moore,
P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(c) Ritchie, T. J.; Macdonald, S. J. F. Eur. J. Med. Chem. 2016, 124,
1057.
Author Contributions
‡A.C.S. and E.J.M. contributed equally.
Notes
(12) Murphy-Benenato, K. E.; Olivier, N.; Choy, A.; Ross, P. L.;
Miller, M. D.; Thresher, J.; Gao, N.; Hale, M. R. ACS Med. Chem. Lett.
2014, 5, 1213.
(13) Popowycz, F.; Routier, S.; Joseph, B.; Merour, J.-Y. Tetrahedron
2007, 63, 1031.
The authors declare no competing financial interest.
(14) Baidya, M.; Brotzel, F.; Mayr, H. Org. Biomol. Chem. 2010, 8,
1929.
(15) Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. J. Org. Chem.
ACKNOWLEDGMENTS
■
The authors acknowledge the financial support of this research
from the NIH NIGMS (R01-GM096129), the Camille Dreyfus
Teacher−Scholar Award Program, and the University of
Michigan. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship for
A.C.S. (supported under Grant No. DGE 1256260). The
authors thank Eli Lilly for providing compound 40.
2014, 79, 11631.
REFERENCES
■
(1) Recent reviews and selected examples: (a) Seregin, I. V.;
Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173. (b) Welsch, M. E.;
Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem. Biol. 2010, 14, 347.
(c) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57,
10257. (d) Bering, L.; Antonchick, A. P. Org. Lett. 2015, 17, 3134.
(e) Jo, W.; Kim, J.; Choi, S.; Cho, S. H. Angew. Chem., Int. Ed. 2016,
55, 9690. (f) Hilton, M. C.; Dolewski, R. D.; McNally, A. J. Am. Chem.
Soc. 2016, 138, 13806. (g) Fier, P. S. J. Am. Chem. Soc. 2017, 139,
9499.
D
Org. Lett. XXXX, XXX, XXX−XXX