4446
J. Am. Chem. Soc. 2001, 123, 4446-4450
Is There Stereoelectronic Control in Hydrolysis of Cyclic
Guanidinium Ions?
Charles L. Perrin* and David B. Young
Contribution from the Department of Chemistry, UniVersity of California, San Diego,
La Jolla, California 92093-0358
ReceiVed October 13, 2000
Abstract: To assess stereoelectronic effects in the cleavage of tetrahedral intermediates, a series of five-, six-,
and seven-membered cyclic guanidinium salts was synthesized. If stereoelectronic control by antiperiplanar
lone pairs is operative, these are expected to hydrolyze with endocyclic C-N cleavage to acyclic ureas. However,
hydrolysis in basic media produces mixtures of cyclic and acyclic products, as determined by 1H NMR analysis.
The results show that in the six-membered ring antiperiplanar lone pairs provide a weak acceleration of the
breakdown of the tetrahedral intermediate, but in five- and seven-membered rings there is no evidence for
such acceleration, which instead can be provided by syn lone pairs.
Introduction
intermediate (1) is favored when two lone pairs on adjacent Y
Antiperiplanar Lone Pairs. Stereoelectronic control (SELC)
is a topic of much current interest.1 The term refers broadly to
the positioning of lone pairs,2 and it is certainly relevant to
anomeric effects.3 In connection with reactivity it has most
widely been applied at the acetal level of oxidation, but effects
are weak or elusive.4 Consideration here is restricted to a
hypothesis due to Deslongchamps that cleavage of a tetrahedral
atoms are antiperiplanar to the leaving group X.5 This prefer-
ence, often called the antiperiplanar lone-pair hypothesis (ALPH)
or the kinetic anomeric effect, is supported by calculations.6
The role of antiperiplanar lone pairs is a fundamental aspect
of the relationship between molecular structure and reactivity.
It is still an area of considerable uncertainty and controversy,7
with wide acceptance8 and only occasional skepticism.9 Much
of the interest is for purposes of synthesis, where it offers a
novel method to control stereochemistry. Customarily steric
(1) Kirby, A. J. The Anomeric and Related Stereoelectronic Effects at
Oxygen; Springer-Verlag: Berlin, 1983. Juaristi, E.; Cuevas, G. Tetrahedron
1992, 48, 5019. The Anomeric Effect and Associated Stereoelectronic
Effects; Thatcher, G. R. J., Ed.; ACS Symp. Ser.; American Chemical
Society: Washington, DC, 1993. Thibaudeau, C.; Chattopadhyaya, J.
Stereoelectronic Effects in Nucleosides and Nucleotides and their Structural
Implications; Uppsala University Press: Uppsala, 1999.
(2) Goodman, R. M.; Kishi, Y. J. Am. Chem. Soc. 1998, 120, 9392.
Parker, E. J.; Coggins, J. R.; Abell, C. J. Org. Chem. 1997, 62, 8582. Arjona,
O.; de Dios, A.; Plumet, J.; Saez, B. J. Org. Chem. 1995, 60, 4932.
Chandrasekhar, S.; Roy, C. D. J. Chem. Soc., Perkin Trans. 2 1994, 2141.
Johnson, C. D. Acc. Chem. Res. 1993, 26, 476.
(3) Alabugin, I. V. J. Org. Chem. 2000, 65, 3910. Box, V. G. S. J. Mol.
Struct. 2000, 522, 145. Carballeira, L.; Perez-Juste, I. J. Comput. Chem.
2000, 21, 462. Anderson, J. E. J. Org. Chem. 2000, 65, 748. Randell, K.
D.; Johnston, B. D.; Green, D. F.; Pinto, B. M. J. Org. Chem. 2000, 65,
220. Perrin, C. L.; Fabian, M. A.; Brunckova, J.; Ohta, B. K. J. Am. Chem.
Soc. 1999, 121, 6911. Uehara, F.; Sato, M.; Kaneko, C.; Kurihara, H. J.
Org. Chem. 1999, 64, 1436. Juaristi, E.; Cuevas, G. Tetrahedron 1999, 55,
359. Alber, F.; Folkers, G.; Carloni, P. J. Phys. Chem. B 1999, 103, 6121.
Mo, Y.; Zhang, Y.; Gao, J. J. Am. Chem. Soc. 1999, 121, 5737. Kirby, A.
J.; Komarov, I. V.; Wothers, P. D.; Feeder, N.; Jones, P. G. Pure Appl.
Chem. 1999, 71, 385. Verevkin, S. P.; Peng, W. H.; Beckhaus, H. D.;
Ru¨chardt, C. Eur. J. Org. Chem. 1998, 2323. Jones, P. G.; Kirby, A. J.;
Komarov, I. V.; Wothers, P. D. J. Chem. Soc., Chem. Commun. 1998, 1695.
Barrows, S. E.; Storer, J. W.; Cramer, C. J.; French, A. D.; Truhlar, D. G.
J. Comput. Chem. 1998, 19, 1111. Tvaroska, I.; Carver, J. P. Carbohydr.
Res. 1998, 309, 1. Lenz, R.; Ley, S. V.; Owen, D. R.; Warriner, S. L.
Tetrahedron: Asymmetry 1998, 9, 2471. Anderson, J. E.; Cai, J.; Davies,
A. G. J. Chem. Soc., Perkin Trans. 2 1997, 2633. Ganguly, B.; Fuchs, B.
J. Org. Chem. 1997, 62, 8892. Buckley, N.; Oppenheimer, N. J. J. Org.
Chem. 1996, 61, 8039.
(4) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Woerpel, K. A. J. Am.
Chem. Soc. 1999, 121, 12208. Dios, A.; Nativi, C.; Capozzi, G.; Franck,
R. W. Eur. J. Org. Chem. 1999, 1869. Zhu, J.; Bennet, A. J. J. Am. Chem.
Soc. 1998, 120, 3887. Deslongchamps, P.; Jones, P. G.; Li, S.; Kirby, A.
J.; Kuusela, S.; Ma, Y. J. Chem. Soc., Perkin Trans. 2 1997, 2621. Moreau,
C.; Lecomte, J.; Mseddi, S.; Zmimita, N. J. Mol. Catal. A 1997, 125, 143.
Bellucci, G.; Chiappe, C.; D’Andrea, F.; Lo Moro, G. Tetrahedron 1997,
53, 3417.
(5) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry;
Pergamon: Oxford, 1983. Deslongchamps, P. Tetrahedron 1975, 31, 2463.
(6) Lehn, J. M.; Wipff, G. J. Am. Chem. Soc. 1974, 96, 4048. Lehn,
J.-M.; Wipff, G. HelV. Chim. Acta 1978, 61, 1274. Faˇrca¸siu, D.; Horsley,
J. A. J. Am. Chem. Soc. 1980, 102, 4906. Pullumbi, P.; Lemeune, S.; Barbe,
J.-M.; Trichet, A.; Guilard, R. Theochem: J. Mol. Struct. 1998, 432, 169.
(7) Sinnott, M. L. AdV. Phys. Org. Chem. 1988, 24, 113. Sinnott, M. L.
In The Anomeric Effect and Associated Stereoelectronic Effects; Thatcher,
G. R. J., Ed.; ACS Symp. Ser.; American Chemical Society: Washington,
DC, 1993; Chapter 6. Thatcher, G. R. J.; Krol, E. S.; Cameron, D. R. J.
Chem. Soc., Perkin Trans. 2 1994, 683. Uchimaru, T.; Tsuzuki, S.; Storer,
J. W.; Tanabe, K.; Taira, K. J. Org. Chem. 1994, 59, 1835.
(8) Huber, R.; Vasella, A. Tetrahedron 1990, 46, 33. Urones, J. G.;
Marcos, I. S.; Basabe, P.; Sexmero, J.; Diez, D.; Garrido, N. M.; Prieto, J.
E. S. Tetrahedron 1990, 46, 2495. Messmer, A.; Hajo´s, G.; Tima´ri, G.
Tetrahedron 1992, 48, 8451. Brace, N. O. J. Org. Chem. 1993, 58, 1804.
Maligres, P. E.; Weissman, S. A.; Upadhyay, V.; Cianciosi, S. J.; Reamer,
R. A.; Purick, R. M.; Sager, J.; Rossen, K.; Eng, K. K.; Askin, D.; Volante,
R. P.; Reider, P. J. Tetrahedron 1996, 52, 3327. Loeppky, R. N.; Cui, W.
Tetrahedron Lett. 1998, 39, 1845. Berges, D. A.; Fan, J.; Devinck, S.;
Mower, K. J. Org. Chem. 2000, 65, 889.
(9) Graczyk, P. P.; Mikolajczyk, M. J. Org. Chem. 1996, 61, 2995. Wipf,
P.; Kim, Y. J. Am. Chem. Soc. 1994, 116, 11678. Brown, R. S.; Bennet, A.
J.; SÄlebocka-Tilk, H. Acc. Chem. Res. 1992, 25, 481. Brown, R. S.; Bennet,
A. J.; SÄlebocka-Tilk, H.; Jodhan, A. J. Am. Chem. Soc. 1992, 114, 3092.
Caserio, M. C.; Shih, P.; Fisher, C. L. J. Org. Chem. 1991, 56, 5517. Agami,
C.; Couty, F.; Prince, B.; Puchot, C. Tetrahedron 1991, 47, 4343. Bennet,
A. J.; Slebocka-Tilk, H.; Brown, R. S.; Guthrie, J. P.; Jodhan, A. J. Am.
Chem. Soc. 1990, 112, 8497. Clennan, E. L.; L’Esperance, R. P.; Lewis,
K. K. J. Org. Chem. 1986, 51, 1440.
10.1021/ja003672y CCC: $20.00 © 2001 American Chemical Society
Published on Web 04/20/2001