We gratefully acknowledge the support of the University of Bath
(TGH), the Royal Society (MGD and TDJ), EPSRC UK (MGD)
and NSERC Canada (TMF).
Notes and references
‡ Crystal data for 3·1.5CH3CN, C56H62B2O4·(CH3CN)1.5: Mr = 882.26,
monoclinic, space group P21/n, a = 11.0360(5), b = 21.5750(10), c =
22.0480(13) Å, b = 100.5070(16)°, T = 150 K, U = 5161.6(5) Å3, Z = 4,
dcalc = 1.135 Mg m23, m(Mo–Ka) = 0.069 mm21, 24829 reflections with
2q 5 46° measured, 7101 unique (Rint = 0.1449) and 3310 observed [I >
2s(I)]. Final residuals for 594 parameters: R1 = 0.1028, wR2 = 0.2723
(observed reflections) and R1 = 0.2036, wR2 = 0.3238 (all data). CCDC
graphic data in .cif format.
Scheme 1
Titration of a chloroform solution of 3 with Bu4NF results in a
decrease of the fluorescence of the boron-bound phenyl group of 3
(Fig. 2). Similar titrations with Bu4NCl and Bu4NBr have no
significant effect on the fluorescence spectrum of 3, thereby
demonstrating its expected selectivity for fluoride. The high
binding constant obtained for a 1 : 1 complex (logK1 = 6.3 ± 0.4)†
supports the expectation that a bidentate ‘endo’, binding mode is
favoured,12 and suggests the potential for more highly fluorescent
(bora)calixarenes to detect very low concentrations of fluoride. A
nonlinear fluorescence response is observed that indicates that a
further association between the 1 : 1 complex and the ligand may
occur at the relatively high concentrations necessary for measure-
ment of the phenylboron derivative. In the case of 3, such a scenario
is geometrically feasible via orthogonal approach of a second
bis(bora)calixarene to the 1 : 1 complex. However, this additional
binding should become insignificant for more highly fluorescent
species.
In conclusion, we have described the first synthesis and
structural characterization of a lower-rim boron-substituted calixar-
ene and have shown it to be a selective and sensitive fluorescent
fluoride sensor. These results provide impetus for further develop-
ment of (bora)calix[n]arenes as anion sensors. Further investigation
will include: improvements in sensitivity by incorporation of other
boron-bound fluorophores; tuning of anion selectivity (and poten-
tially simultaneous cation selectivity) by boronation of a range of
calix[n]arenes; and immobilization of (bora)calix[n]arenes via the
proven methods of upper-rim calixarene derivatisation.
1 For reviews on anion sensors see: (a) J. J. Lavigne and E. V. Anslyn,
Angew. Chem., Int. Ed., 2001, 40, 3118; (b) P. D. Beer and P. A. Gale,
Angew. Chem., Int. Ed., 2001, 40, 486; (c) T. S. Snowden and E. V.
Anslyn, Curr. Opin. Chem. Biol., 1999, 3, 740; (d) P. A. Gale and J. L.
Sessler, Chem. Commun., 1998, 1; (e) A. P. de Silva, H. Q. N.
Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T.
Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515; (f) F. P.
Schmidtchen, A. Gleich and A. Schummer, Pure Appl. Chem., 1989, 61,
1535.
2 K. L. Kirk, Biochemistry of the Elements, Kluwer Academic, New York,
1991; vol. 9A.
3 M. S. Frant and J. W. Ross Jr., Science, 1966, 154, 1553.
4 H. Sohn, S. Letant, M. J. Sailor and W. C. Trogler, J. Am. Chem. Soc.,
2000, 122, 5399.
5 H. E. Katz, J. Am. Chem. Soc., 1985, 107, 1420; H. E. Katz, J. Org.
Chem., 1985, 50, 5027.
6 (a) C. R. Cooper, N. Spencer and T. D. James, Chem. Commun., 1998,
1365; (b) A. Yuchi, A. Tatebe, S. Kani and T. D. James, Bull. Chem.
Soc. Jpn., 2001, 74, 509.
7 For other recent examples of boron-based fluoride receptors see: (a) S.
Aldridge, C. Bresner, I. A. Fallis, S. J. Coles and M. B. Hursthouse,
Chem. Commun., 2002, 740; (b) S. Yamaguchi, S. Akiyama and K.
Tamao, J. Am. Chem. Soc., 2001, 123, 11372; (c) S. Solé and F. P.
Gabbaï, Chem. Commun., 2004, 1284.
8 W. I. Cross, M. P. Lightfoot, F. S. Mair and R. G. Pritchard, Inorg.
Chem., 2000, 39, 2690.
9 J. L. Atwood, S. G. Bott, C. Jones and C. L. Raston, J. Chem. Soc.,
Chem. Commun., 1992, 1349; J. L. Atwood, M. G. Gardiner, C. Jones,
C. L. Raston, B. W. Skelton and A. H. White, Chem. Commun., 1996,
2487; L. T. Byrne, J. M. Harrowfield, D. C. R. Hockless, B. J. Peachey,
B. W. Skelton and A. H. White, Aust. J. Chem., 1993, 46, 1673; M. G.
Gardiner, S. M. Lawrence, C. L. Raston, B. W. Skelton and A. H. White,
Chem. Commun., 1996, 2491; V. C. Gibson, C. Redshaw, W. Clegg and
M. R. J. Elsegood, Polyhedron, 1997, 16, 4385; D. Jacoby, C. Floriani,
A. Chiesi-Villa and C. Rizzoli, J. Chem. Soc., Dalton Trans., 1993, 813;
O. Lukin, M. O. Vysotsky and V. I. Kalchenko, J. Phys. Org. Chem.,
2001, 14, 468; R. Paciello, L. Siggel and M. Roper, Angew. Chem., Int.
Ed., 1999, 38, 1920; S. Shang, D. V. Khasnis, H. Zhang, A. C. Small, M.
Fan and M. Lattman, Inorg. Chem., 1995, 34, 3610.
10 N. P. Clague, J. D. Crane, D. J. Moreton, E. Sinn , S. J. Teat and N. A.
Young, J. Chem. Soc., Dalton Trans., 1999, 3535; N. P. Clague, W.
Clegg, S. J. Coles, J. D. Crane, D. J. Moreton, E. Sinn, S. J. Teat and N.
A. Young, Chem. Commun., 1999, 379; M. G. Davidson, J. A. K.
Howard, S. Lamb and C. W. Lehmann, Chem. Commun., 1997, 1607; S.
R. Dubberley, A. J. Blake and P. Mountford, Chem. Commun., 1997,
1603.
11 Observation of four methylene resonances in the 1H NMR spectrum
suggests that this conformation is also retained in solution.† This is
expected since chelation of the calixarene lower-rim to two boron atoms
will impart a high degree of rigidity on the system.
12 Values reported for the binding constant of fluoride to monodentate
boron centres (logK) include 0.6,6b 1.0,7a and 5.4.7b Although
meaningful comparisons are difficult, our results suggest that the
sterically inhibited monodentate ‘exo’ binding mode is an unlikely
candidate for the 1 : 1 complex.
Fig. 2 Change in fluorescence spectrum of 3 (0.010 mol dm23 in
chloroform) with addition of Bu4N+F2 (0, 0.001, 0.002, 0.005, 0.007,
0.008, 0.009 and 0.010 mol dm23 for highest to lowest absorptions,
respectively).
C h e m . C o m m u n . , 2 0 0 4 , 1 6 4 0 – 1 6 4 1
1641