acid derivatives7 include oxidative dimerization with the
possible use of chiral esters for asymmetric induction,8
Pd-catalyzed R-alkylation,9 and chiral pool derived elec-
trophilic amination of aspartic acid enolates.10 However,
these methods often need special protecting groups or,
as in the latter case, require different syntheses for each
diastereomer. Herein, we report an efficient method for
the preparation of racemic diastereomerically pure,
orthogonally protected diaminosuccinic acids starting
from easily accessible olefinic glycine dimers.11
A Sh or t Dia ster eoselective Syn th esis of
Or th ogon a lly P r otected Dia m in osu ccin ic
Acid Der iva tives
Kirsten Zeitler and Wolfgang Steglich*
Department Chemie, Ludwig-Maximilians-Universita¨t
Mu¨nchen, Butenandtstr. 5-13 (Haus F),
D-81377 Mu¨nchen, Germany
We envisaged a cis-selective hydrogenation of olefinic
glycine dimers to provide either the syn- or anti-isomers
of the diamino dicarboxylic acids, depending on the
double bond geometry. Catalytic hydrogenation of dehy-
droamino acids is one of the most efficient methods for
the enantioselective preparation of R-12 and â-amino13
acids. In our case, however, the strong deactivation14 of
the tetrasubstituted double bond15 had to be overcome,
and additionally, the hydrogenation should be stereose-
lective16 and compatible with N-carbamate protecting
groups17 to facilitate later deprotection of the products.
To study and optimize the reaction conditions, we chose
the symmetrical N-Boc-glycinate dimer 1 as an example.
The Z- and E-isomers of 1 are easily accessible,11 and the
wos@cup.uni-muenchen.de
Received April 15, 2004
Abstr a ct: Homogeneous, Rh-catalyzed hydrogenation of
heteromeric olefinic glycine dimers presents an efficient
route to diastereomerically pure, orthogonally protected
diaminosuccinic acid derivatives depending on the double
bond geometry of the starting material. The products were
obtained as racemates.
R,â-Diamino acids constitute a structural element in
several antibiotics, such as capreomycins, antrimycin,
and lavendomycin.1 A variety of different routes have
been reported for the synthesis2 of R,â-diamino propanoic
and R,â-diamino butanoic acids, highlighting the great
interest in these vicinal diamine components.3 In addi-
tion, natural and synthetic diamino dicarboxylic acids
play an important role as cross-linking elements and may
be used for stabilization of peptide secondary structures
and the introduction of conformational constraints. To
date, most synthetic efforts have concentrated on diami-
nopimelic acid, an essential component of bacterial
peptidoglycan cell walls,4 and diaminosuberic acid, a
dicarba analogue of cystine.5 However, it has also been
shown that shorter connections can be advantageous for
biological activity.6 Major approaches to diaminosuccinic
(6) Bhatnagar, P. K.; Agner, E. K.; Alberts, D.; Arbo, B. E.; Callahan,
J . F.; Cuthbertson, A. S.; Engelsen, S. J .; Fjerdingstad, H.; Hartmann,
M.; Heerding, D.; Hiebl, J .; Huffman, W. F.; Hysben, M.; King, A. G.;
Kremminger, P.; Kwon, C.; LoCastro, S.; Løvhaug, D.; Pelus, L. M.;
Petteway, S.; Takata, J . S. J . Med. Chem. 1996, 39, 3814-3819.
(7) Diaminosuccinic acid (3-aminoaspartic acid)7a,c,d has been isolated
from Streptomyces rimosus ((+)-(S,S)-diastereomer).7b Several studies
support its possible use as ligand for aspartate-dependent enzymes
that might be of interest for tumor therapy:7e (a) Ozaki, Y.; Iwasaki,
T.; Miyoshi, M.; Matsumoto, K. J . Org. Chem. 1979, 44, 1714-1716.
(b) Hochstein, F. A. J . Org. Chem. 1959, 24, 679-680. (c) McKennis,
H.; Yard, A. S. J . Org. Chem. 1958, 23, 980-982. (d) Biernat, J . F.
Rocz. Chem. 1971, 45, 2081-2087. (e) Chang, P. K.; Sciarini, L. J .;
Handschumacher, R. E. J . Med. Chem. 1973, 16, 1277-1280.
(8) Alvarez-Ibarra, C.; Csa´ky¨, A. G.; Colmenero, B.; Quiroga, M. L.
J . Org. Chem. 1997, 62, 2478-2482.
(9) Chen, Y.; Yudin, A. K. Tetrahedron Lett. 2003, 44, 4865-4868.
(10) (a) Fernandez-Megia, E.; Paz, M. M.; Sardina, F. J . J . Org.
Chem. 1994, 59, 7643-7652. (b) Riemer, C.; Bayer, T.; Kessler, H.
Peptides 1998, 25th European Peptide Symposium; Bajusz, S., Hudecz,
F., Eds.; Akade´miai Kiado´: Budapest, 1999; pp 690-691.
(11) Schumann, S.; Zeitler, K.; J a¨ger, M.; Polborn, K.; Steglich, W.
Tetrahedron 2000, 56, 4187-4195.
(1) For comprehensive overviews of biologically active R,â-diamino
acids, see: (a) Luo, Y.; Blaskovich, M. A.; Lajoie, G. A. J . Org. Chem.
1999, 64, 6106-6111. (b) Dunn, P. J .; Ha¨ner, R.; Rapoport, H. J . Org.
Chem. 1990, 55, 5017-5025 and references therein.
(2) Most methodologies rely on stepwise preparations, often starting
from chiral pool precursors. Recently, some new catalytic approaches
such as olefinic diamination2a-c or Mannich reaction of imines with
glycine derivatives2d have been developed: (a) Mun˜iz, K.; Nieger, B.
Synlett 2003, 211-214. (b) Pei, W.; Timmons, C.; Xu, X.; Wei, H.-X.;
Li, G. Org. Biomol. Chem. 2003, 1, 2919-2921. (c) Wei, H.-X.; Kim, S.
H.; Li, G. J . Org. Chem. 2003, 67, 4777-4781. (d) Bernardi, L.; Gothelf,
A. S.; Hazell, R. G.; J ørgensen, K. A. J . Org. Chem. 2003, 68, 2583-
2591. A summary of different synthetic methods and related literature
can be found in ref 1a and (e) Ambroise, L.; Dumez, E.; Szeki, A.;
J ackson, R. F. W. Synthesis 2002, 2296-2308. (f) Viso, A.; de la
Pradilla, R. F.; Lo´pez-Rodr´ıguez, M. L.; Garc´ıa, A.; Flores, A.; Alonso,
M. J . Org. Chem. 2004, 69, 1542-1547.
(12) (a) Ager, D. J . Curr. Opin. Drug Discov. Devel. 2002, 5, 892-
905. (b) Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.;
Studer, M. Adv. Synth. Catal. 2003, 345, 103-151. (c) Burk, M. J .;
Bienewald, F. In Transition Metals in Organic Synthesis; Beller, M.,
Bolm, C., Eds.; Wiley-VCH: Weinheim, 1998; Vol. 2, pp 13-24 and
references therein.
(13) As a consequence of the increasing interest in â-amino acids,13a
several examples have been described; for a recent review, see ref 13b
and references therein: (a) Gademann, K.; Hintermann, T.; Schreiber,
J . V. Curr. Med. Chem. 1999, 6, 905-925. (b) Drexler, H.-J .; You, J .;
Zhang, S.; Fischer, C.; Baumann, W.; Spannenberg, A.; Heller, D. Org.
Process Res. Dev. 2003, 7, 355-361.
(14) Only few examples for the hydrogenation of diamino dehy-
droamino acid derivatives are known: (a) McGarrity, J .; Spindler, F.;
Fuchs, R.; Eyer, M. European Patent EP-A 624 587A2, 1995; Chem.
Abstr. 1995, 122, P81369q. (b) Kuwano, R.; Okuda, S.; Ito, Y.
Tetrahedron: Asymmetry 1998, 9, 2773-2775. (c) Robinson, A. R.; Lim,
C. Y.; He, L.; Ma, P.; Li, H.-Y. J . Org. Chem. 2001, 66, 4141-4147. (d)
Robinson, A. J .; Stanislawski, P.; Mulholland, D.; He, L.; Li, H.-Y. J .
Org. Chem. 2001, 66, 4148-4152.
(3) (a) Lucet, D.; Le Gall, T.; Mioskowski, C. Angew. Chem., Int. Ed.
1998, 37, 2580-2627. (b) De Clercq, P. J . Chem. Rev. 1997, 97, 1755-
1792 and references therein.
(4) (a) Cox, R. J .; Sutherland, A.; Vederas, J . C. Bioorg. Med. Chem.
2000, 8, 843-871. (b) Gao, Y.; Lane-Bell, P.; Vederas, J . C. J . Org.
Chem. 1998, 63, 2133-2143. (c) Roberts, J . L.; Chan, C. Tetrahedron
Lett. 2002, 43, 7679-7682 and references therein.
(5) (a) Williams, R. M.; Liu, J . J . Org. Chem. 1998, 63, 2130-2132.
(b) Nutt, R. F.; Strachan, R. G.; Veber, D. F.; Holly, F. W. J . Org. Chem.
1980, 45, 3078-3080. (c) Collier, P. N.; Campbell, A. D.; Patel, I.;
Raynham, T. M.; Taylor, R. J . K. J . Org. Chem. 2002, 67, 1802-1815
and references therein.
(15) Hydrogenation of tetrasubstituted double bonds remains chal-
lenging; for some selected examples, see: (a) Burk, M. J .; Gross, M.
F.; Martinez, J . P. J . Am. Chem. Soc. 1995, 117, 9375-9376. (b) Burk,
M. J .; Gross, M. F.; Harper, G. P.; Kalberg, C. S.; Lee, J . R.; Martinez,
J . P. Pure Appl. Chem 1996, 68, 37-44.
10.1021/jo049371e CCC: $27.50 © 2004 American Chemical Society
Published on Web 07/30/2004
6134
J . Org. Chem. 2004, 69, 6134-6136