10.1002/anie.202011172
Angewandte Chemie International Edition
COMMUNICATION
Support Plan” of Xi’an Jiaotong University. We thank Miss Hao
and Miss Lu at Instrument Analysis Center of Xi'an Jiaotong
University for the assistance with confocal fluorescence imaging
and LCMS/MS analysis.
Keywords: DNA nanotechnology • epigenetic marks• pairwise
proximity • differentiated recognition • single-cell imaging
[1]
a) C. X. Song, K. E. Szulwach, Q. Dai, Y. Fu, P. Liu, L. Li, G. L. Xu, P.
Jin, C. He, Cell 2013, 153, 678-691; b) M. Berney, J. F. McGouran, Nat.
Rev. Chem. 2018, 2, 332-348.
[2]
a) B. Xia, D. Han, X. Lu, Z. Sun, X. Jiang, W. Xie, C. He, C. Yi, Nat.
Methods 2015, 12, 1047-1050; b) M. J. Booth, G. Marsico, M. Bachman,
D. Beraldi, S. Balasubramanian, Nat. Chem. 2014, 6, 435; c) Q.-Y. Li,
N.-B. Xie, J. Xiong, B. F. Yuan, Y. Q. Feng, Anal. Chem. 2018, 90,
14622-14628; d) M. J. Booth, M. R. Branco, G. Ficz, D. Oxley, F.
Krueger, W. Reik, S. Balasubramanian, Science 2012, 336, 934-937.
a) H. Zeng, B. He, B. Xia, D. Bai, H. Guo, C. He, Q. Dai, C. Yi, J. Am.
Chem. Soc. 2018, 140, 13190-13194; b) C. Zhao, H. Wang, B. Zhao, C.
Li, R. Yin, M. Song, B. Liu, Z. Liu, G. Jiang, Nucleic Acids Res. 2014,
42, e81-e81; c) C. Liu, G. Zou, S. Peng, Y. Wang, W. Yang, F. Wu, Z.
Jiang, X. Zhang, X. Zhou, Angew. Chem. Int. Edit. 2018, 57, 9689-
9693; d) L. Hu, Y. Liu, S. Han, L. Yang, W. Sheng, S. Gao, X. He, C.
He, J. Am. Chem. Soc. 2019, 141, 8694-8697; e) C. Zhu, Y. Gao, H.
Guo, K. Kee, F. Tang, C. Yi, Cell Stem Cell 2017, 20, 720-731. e725.
B. Z. Stanton, E. J. Chory, G. R. Crabtree, Science 2018, 359,
eaao5902.
Figure 3. Pairwise proximity-differentiated visualization of 5fC and 5hmC in
single cells. Top: schematic description of the design; bottom: statistical
analysis of single-cell fluorescence intensity and RCP spot counts for each
channel (N=55).
[3]
pathways. Notably, we can’t determine whether these spatial
proximity sites exist in the same or between two gene regions or
chromatins. Furthermore, the developed method is not limited to
the analysis of DNA epigenetic marks, and can be easily
expanded to detect other pair combinations of histone
modifications or proteins as mentioned above. It only requires to
replace chemical probes for DNA modifications as specific
antibodies for histone modifications or proteins whithout the
change of DNA probe sets. Multiplexed visualization of large
numbers of pairwise proximities in individual cells may also be
realized by using sequential hybridization-image-erase
barcoding cycles,[15] which increases the detection throughput
beyond hundreds of target molecules. On the other hand, the
two DBCO-primer probes of our method are occupied after the
hybridization with splint ligation probes. It means that each copy
of DBCO-primer probes can’t be reused for the detection of
another target site. If there are residual 5fC or 5hmC sites
neighboring the sites of 5fC/5hmC proximity, they will induce
fluorescence signals of residual sites rather than those of
pairwise proximity sites. In addition, our method detects only an
individual site of pairwise proximity per set of probe. To study a
comprehensive set of proximities or interactions between
multiple components, we should recycle the DNA probes for
continuous and repeated recognition of any potential target sites.
[4]
[5]
a) D. N. Weinberg, S. Papillon-Cavanagh, H. Chen, Y. Yue, X. Chen, A.
Djedid, A. S. Harutyunyan, N. Jabado, B. A. Garcia, H. Li, C. D. Allis, J.
Majewski, C. Lu, Nature 2019, 573, 281-286; b) S. A. Quinodoz, N.
Ollikainen, B. Tabak, A. Palla, J. M. Schmidt, M. Jovanovic, A. Chow, L.
Cai, P. McDonel, M. Guttman, Cell 2018, 174, 744-757; c) B. Lai, Q.
Tang, W. Jin, G. Hu, D. Wangsa, Y. Ding, M. Zhao, S. Liu, J. Song, T.
Ried, K. Zhao, Nat. Methods 2018, 15, 741-747.
[6]
[7]
F. Chen, M. Bai, X. Cao, Y. Zhao, J. Xue, Y. Zhao, Nucleic Acids Res.
2019, 47, e145-e145.
a) G. R. Kafer, X. Li, T. Horii, I. Suetake, S. Tajima, I. Hatada, P. M.
Carlton, Cell rep. 2016, 14, 1283-1292; b) S. Zhong, Z. Li, T. Jiang, X.
Li, H. Wang, Anal. Chem. 2017, 89, 5702-5706.
[8]
a) A. V. Pinheiro, D. Han, W. M. Shih, H. Yan, Nat. Nanotechnol. 2011,
6, 763; b) F. Zhang, S. Jiang, S. Wu, Y. Li, C. Mao, Y. Liu, H. Yan, Nat.
Nanotechnol. 2015, 10, 779; c) P. Zhan, T. Wen, Z. g. Wang, Y. He, J.
Shi, T. Wang, X. Liu, G. Lu, B. Ding, Angew. Chem. Int. Edit. 2018, 57,
2846-2850; d) H. Li, M. Wang, T. Shi, S. Yang, J. Zhang, H. H. Wang, Z.
Nie, Angew. Chem. Int. Edit. 2018, 57, 10226-10230.
Acknowledgements
[9]
a) H. Gu, J. Chao, S.-J. Xiao, N. C. Seeman, Nature 2010, 465, 202-
205; b) W. Fu, L. Tang, G. Wei, L. Fang, J. Zeng, R. Zhan, X. Liu, H.
Zuo, C. Z. Huang, C. Mao, Angew. Chem. Int. Edit. 2019, 131, 16557-
16562; c) L. Xu, Y. Gao, H. Kuang, L. M. Liz‐Marzán, C. Xu, Angew.
Chem. Int. Edit. 2018, 57, 10544-10548; d) S. Li, Y. Liu, L. Liu, Y. Feng,
L. Ding, H. Ju, Angew. Chem. Int. Edit. 2018, 130, 12183-12187.
This research was funded by the National Natural Science
Foundation of China (grant number 31671013, 21705124 and
21874105), the China Postdoctoral Science Foundation [grant
number 2017M613102, 2018T111032 and 2019M663658], the
Natural Science Foundation of Shaanxi Province (grant number
2018JC-001), Innovation Capability Support Program of Shaanxi
(grant number 2018PT-28 and 2019PT-05), the Fundamental
Research Funds for the Central Universities and “Young Talent
[10] a) F. Chen, J. Xue, M. Bai, J. Qin, Y. Zhao, Chem. Sci. 2019, 10, 3103-
3109; b) C. Jung, P. Allen, A. Ellington, Nat. Nanotechnol. 2016, 11,
157; c) X. Yang, Y. Tang, S. D. Mason, J. Chen, F. Li, Acs Nano 2016,
This article is protected by copyright. All rights reserved.